Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Особенности эмбриогенеза рыб и амфибий. Эмбриогенез рыб


Эмбриогенез хрящевых и костистых рыб — Мегаобучалка

Дробление яйцеклетки частичное, неравномерное, или дискоидальное. Процесс дробления охватывает лишь незначительную часть анимального полюса и ведет к образованию дискобластулы. Бластодерма дискобластулы у этих животных называется бластодиском или зародышевым диском, а дно бластулы образовано поверхностным слоем недробящегося желтка – перибластом. Клетки бластодиска, размножаясь, образуют многослойный бластодиск, который из круглого становится овальным, и верхний слой его клеток приобретает эпителиоподобную форму (рисунок 1.5).

 

 

1– бластомеры; 2– перибласт; 3– мероциты; 4– желток; 5 – бластоцель

Рисунок 1.5–Последовательность (I–V) дробления зародыша ската

Образование двухслойного зародыша происходит путем инвагинации. Гаструляция начинается с перемещения клеток к заднему краю бластодиска, который утолщается и начинает подворачиваться через собственный край, образовывая энтодерму и эктодерму. Край бластодиска, через который осуществляется подворачивание клеточного материала, или инвагинация, называют краевой зарубкой. Последняя и является бластопором. Средняя часть краевой зарубки соответствует верхней, или спинной, губе, а боковые ее части – боковым губам бластопора. Полость впячивания, располагающаяся между энтодермой, и нераздробленным желтком, соответствует полости первичной кишки. Энтодерма в своей средней части содержит клеточный материал хордальной пластинки, а по бокам – материал мезодермы, вначале сегментированной, а по краям краевой зарубки несегментированной. Таким образом, мезодерма возникает путем инвагинации, к которой присоединяется иммиграция.

В процессе инвагинации формируется лишь та часть энтодермы, которая впоследствии образует кишечную трубку, точнее, ее эпителиальную выстилку. Остальная энтодерма, которая затем обрастает желток, возникает из глубоких слоев клеток бластодиска путем деляминации внешнего слоя клеток бластодиска или из перибласта. Она называется желточной энтодермой. У многих рыб имеет место один из перечисленных способов образования энтодермы либо комбинация их. В дальнейшем кишечная энтодерма соединяется с желточной энтодермой в единый внутренний зародышевый листок. На этом завершается гаструляция (рисунок 1.6).

 

 

I – дискобластула; II – начало инвагинации бластодермы; III – бластодиск; IV–гаструла; V– образование мезодермы;

1– наружный слой клеток бластодиска; 2 – клеточный материал будущей желточной энтодермы; 3– перибласт; 4– мероциты; 5–желток; 6– бластоцель; 7 – краевая зарубка; 8– гастроцель; 9– клеточный материал хорды; 10–мезодерма; 11– кишечная энтодерма; 12– эктодерма; 13– клеточный материал нервной пластинки

Рисунок 1.6. Эмбриогенез хрящевых рыб

Закладка осевых органов происходит примерно так же, как и у земноводных, однако в отличие от последних у рыб формирование кишечной трубки происходит иначе в связи с наличием больших запасов желтка в яйцеклетке. Зародыш рыб в процессе развития продолжительное время располагается на нераздробленном желтке в распластанном виде. На первых порах зародыш не имеет брюшной стенки. Смыкание клеток энтодермы в трубку происходит при обрастании всеми тремя зародышевыми листками резервного желтка и образовании желточного мешка. Интенсивно размножаясь, клетки трех зародышевых листков от тела зародыша начинают распространяться на периферию и надвигаются на желток. Этот процесс носит название процесса обрастания желтка. Наиболее интенсивно он идет спереди и по бокам зародыша. В задней части зародыша, где шло подворачивание материала в процессе гаструляции, обрастание желтка идет медленнее в связи с интенсивным ростом хвостовой части зародыша. Далее боковые губы бластопора сближаются и срастаются, образуя тем самым брюшную стенку тела зародыша, хвостовая часть зародыша отрывается от желтка, а сам зародыш перемещается к центру зародышевого диска. После обособления хвостовой части зародыша от желтка обрастание желтка начинается также с задней части бластодиска, или зародышевого диска.

Между головой и туловищем зародыша, с одной стороны, и внезародышевой эктодермой, мезодермой и энтодермой – с другой, возникает сужение – перехват, называемый туловищной складкой. Благодаря туловищной складке головной конец зародыша также отрывается от желтка. В последнюю очередь от желтка обособляется туловище зародыша. Туловищная складка способствует сворачиванию энтодермы в трубку и образованию брюшной стенки зародыша. Однако процесс сворачивания энтодермы в трубку не охватывает всего кишечника и в средней части туловища кишечная трубка остается несомкнутой. В этом месте полость кишечника протоком, именуемым желточным стебельком, сообщается с полостью желточного мешка,

С образованием желточного стебелька энтодерма четко подразделяется на кишечную энтодерму и желточную, или внезародышевую, энтодерму. Внезародышевая эктодерма, мезодерма и энтодерма, обрастая полностью желток, образуют желточный мешок, который является временным, или провизорным, органом зародыша (рисунок 1.7).

 

 

I – зародыш рыбы с желточным мешком: 1– тело рыбы; 2– желточный мешок, 3 – желток;

II – стенка желточного мешка: 1 – внезародышевая эктодерма; 2– внезародышевая мезодерма; 3–внезародышевая (желточная) энтодерма; 4 – зерна желтка; 5 – ядра клеток желточной энтодермы; 6– кровеносные сосуды внезародышевой мезодермы; 7 – эпителиальные покровные и 8–бокаловидные клетки внезародышевой зктодермы.

Рисунок 1.7–Строение желточного мешка костистых рыб

 

Энтодерма желточного мешка ферментирует желток и всасывает питательные вещества. Мезодерма желточного мешка благодаря хорошо развитой системе кровеносных сосудов транспортирует питательные вещества к телу зародыша, а покрывающая ее эктодерма выполняет защитные функции. Кроме трофической функции, желточный мешок выполняет дыхательную и кроветворную функции. В конце эмбрионального развития, когда запасы желтка истощаются, желточный мешок либо отпадает, либо становится частью стенки кишечника и брюшной стенки организма.

 

 

megaobuchalka.ru

Особенности эмбриогенеза рыб и амфибий.

Для рыб и амфибий свойственны достаточно высокий уровень морфофункциональной организации тела, близкое филогенетическое родство и наличие стадий личиночного метаморфоза, протекающих в водной среде, что обусловливает сходство в строении их яйцеклеток и течении основных этапов зародышевого развития.

В связи с промежуточным положением класса земноводных между чистыми обитателями водной среды и представителями животных, ведущих наземный образ жизни, наиболее целесообразно остановить внимание на главных особенностях доличиночного эмбриогенеза амфибий.

Яйцеклетки амфибий накапливают значительное количество желточных включений, обеспечивающих ранние этапы развития (мезотелолецитальный тип). Желток занимает большую часть клетки (вегетативный полюс). Меньший анимальный полюс отличается черной или темно-серой окраской из-за накопления черного пигмента, аккумулирующего в себе тепловую энергию еще не жаркого, в первоначальную весеннюю пору, солнца. Оплодотворение внешнее. Дробление зиготы амфибий полное неравномерное, замедленное из-за желтка. Первые две борозды дробления проходят меридианно, как и у ланцетника, разделяя зиготу на 4 равных бластомера. Но уже первая широтная борозда переводит дробление в форму неравномерного, так как она проходит в пограничной, между анимальным и вегетативным полюсами, зоне, отчего верхние бластомеры имеют меньшую величину (микромеры) по сравнению с нижними, загруженными желтком в большом количестве (макромеры). При последующих турах дробления малые бластомеры делятся быстрее, высвобождая в области крыши небольшую полость (бластоцель), а крупные медленнее. Они малоподвижны, отчего формируют многослойное дно бластулы и в меньшей степени ее краевые зоны. Такой тип бластулы именуетсяамфибластулой.

В связи с тем, что большую часть амфибластулы образуют крупные, богатые желтком бластомеры, ее дно и краевые зоны представляют собой готовую уже энтодерму, которая в дальнейшем целиком вся превращается в трофический орган – первичную кишку.

Эктодерма поэтому у зародышей земноводных должна появиться, в отличие от ланцетников, наново. В качестве источника ее формирования могут выступать у них только быстро делящиеся микромеры крыши. Постоянно накапливаясь в большом количестве в этой области, обозначенные мелкие бластомеры сползают вниз и постепенно обрастают краевые зоны и дно, образуя вокруг них своеобразную наружную обертку (эктодерму), что по своей природе напоминает процесс ручного изготовления крупных лекарственных форм –болюсов. Это и послужило основанием для присвоения такому своеобразному типу гаструляции у амфибий наименованияэпиболии, но переводимого по своему сущностному значению как обрастание.

На этапе дифференцировки зародышевых листков нервная пластинка, как и у ланцетника, появляется на базе дорсальной срединной эктодермы, а вот формирование зачатков хорды и мезодермы претерпевает значительные изменения и также переносится в наружный зародышевый листок – в область его краевой зоны на стороне будущей каудальной части тела зародыша (зона серого полумесяца).

Дифференцирующиеся клетки общего вначале хордомезодермального зачатка активно размножаются и мощным потоком мигрируют в глубь гаструлы, впячиваясь в бластоцель. Средняя часть этого потока клеток движется в краниальном направлении над энтодермой, формируя хордальную пластинку. Его боковые ветви представляют зачатки парной мезодермы. Обособляясь от хордальной пластинки, мезодермальные клетки направляются влево и вправо от центральной плоскости зародыша, заворачиваются над верхними краями энтодермы вентрально и, продолжая усиленно делиться и расти, внедряются между энто- и эктодермой, помогая упомянутой энтодерме замыкаться в первичную кишечную трубку.

Образовавшаяся мезодерма путем перемещения и расслоения клеток формирует париетальный и висцеральный листки с заключенной между ними вторичной полостью тела – целомом.

Последующие морфогенетические процессы дифференцировки мезодермыпротекают сходно у представителей всех классов позвоночных животных.

В дорсальных частях левой и правой мезодермы клетки усиленно размножаются, вследствие чего полость между листками исчезает, а обе ее половины последовательно подразделяются на сегменты (обеспечивают метамерность строения животного). Каждый такой сегмент участвует в формировании соответствующих участков тела, почему им и присваивается название сомитов(soma– тело).

Выпячиваясь под каждым сомитом медиально, средние участки мезодермы образуют трубкообразные выросты – сегментные ножки, которые представляют собой основу для последующего формирования из них органов мочевыделения и размножения. Первыми на их базе развиваются почки, отчего сегментные ножки можно именовать такженефротомами(nephros– почка).

Обширные нижние части левой и правой мезодермы остаются несегментированными, продолжают свой рост вентрального навстречу друг другу и, срастаясь, формируют теперь уже единую вторичную полость тела, в которой размещаются внутренние органы, что предопределяет присвоение им названия спланхнотомов(splanchnа – внутренности).

В сомитах мезодермы клеточный материал, дифференцируясь, разделяется на три сагиттальные пластинки. Наружная пластинка служит базой для формирования соединительнотканной основы кожи (дерматом), средняя – скелетной мускулатуры (миотом), а внутренняя – прочной опоры телу – скелета (склеротом).

Левые и правые половины спланхнотома активно выселяют в промежутки между зародышевыми листками и осевыми органами клеточные элементы, образующие временную зародышевую ткань – мезенхимуиз которой в последующем будут формироваться все разновидности опорно-трофических тканей, эндотелий кровеносных и лимфатических сосудов, а также гладкая мышечная ткань внутренних органов.

Оставшиеся после обособления мезенхимы клетки париетального и висцерального листков мезодермы преобразуются в однослойный плоский эпителий серозных оболочек – мезотелий.

studfiles.net

Биология развития костистых рыб (Teleostei)

Рассмотрение филогенетического древа рыб убеждает в том, что два типа развития низших позвоночных, с полным и дискоидальным дроблением, которые определяются объемом и, возможно, плотностью запасаемого в яйце желтка, возникают независимо.

Трудно сказать, случайностью или закономерностью является тот факт, что богатые желтком яйца, которые обусловливают дискоидальный тип дробления, характерны для процветающих ныне селахий и костистых рыб, тогда как полное дробление типично для современных двудышащих, кистеперых, хрящевых ганоидов, костных ганоидов, т. е. для классов, имеющих в настоящее время весьма ограниченное число видов.

При описании развития костистых рыб акцент будет сделан на особенностях эмбриогенеза Danio rerio, в англоязычной литературе известной как zebrafish. D. rerio за последние десять-пятнадцать лет стала модельным объектом молекулярной биологии развития. Этому способствовала интенсивная разработка проблем генетики данио, выявление и идентификация разнообразных мутаций, затрагивающих ранние этапы онтогенеза. Немаловажную роль имели и некоторые особенности биологии этой рыбы: данио прекрасно размножается в лабораторных условиях, достигает половозрелости за относительно короткий период, икринки достаточно крупные и прозрачные, что позволяет вести непосредственное наблюдение за развитием и его аномалиями.

Размеры ооцитов у рыб находятся в обратной зависимости от количества половых продуктов, выметываемых самкой: наименьшие размеры ооцитов характерны для видов с высокой продуктивностью женских гамет. Имеется определенная зависимость между размерами икринок и стадией, на которой происходит вылупление личинки. У видов с крупными ооцитами вылупляются мальки, близкие по форме взрослым животным. У видов с мелкими ооцитами, напротив, вылупляются скорее личинки, которые существенно отличаются от взрослых форм.

Яйцо рыб окружено первичной по своему происхождению лучистой оболочкой — zona radiata, имеющей, как правило, довольно сложную структуру и радиальную исчерченность. Эта исчерченность обусловлена наличием многочисленных микроканальцев. В период оогенеза в канальцы zona radiata заходят микроворсинки ооцита и фолликулярных клеток, что обеспечивает транспортировку питательных веществ в ооцит. У некоторых видов рыб кроме zona radiata образуются вторичные и третичные оболочки. Например, у видов с придонным икрометанием яйца имеют вторичную студенистую оболочку (А. С. Гинзбург, 1968). Яйцевая оболочка рыб непроницаема для спермиев. Для их проникновения служит особое отверстие — микропиле.

Яйца костистых рыб имеют ярко выраженный телолецитальный характер. Почти вся цитоплазма сосредоточена на периферии яйца. После оплодотворения цитоплазма стягивается в анимальную область, где расположено ядро, образуя здесь цитоплазматический бугорок, или бластодиск. Вегетативная часть ооцита занята плотной желточной массой, в которую вкраплены жировые включения.

Дробление яйца дискоидальное, при котором борозды затрагивают только бластодиск. Первые четыре деления обычно меридиональные. На стадии 16 бластомеров лишь четыре центральные клетки обособлены от желтка, тогда как бластомеры, лежащие по периферии диска, сохраняют связь с желтком. Позднее начинаются деления, плоскость которых проходит в широтном направлении. Благодаря этому образуются клетки внешнего слоя (кроющий слой) и внутренние клетки. Последние сохраняют связь с желтком. На стадиях дробления судьба клеток еще не специфицирована. Показано, что потомки одной и той же клетки могут попасть в разные ткани и в разные области тела зародыша (Kimmel, Warga, 1987).

Существование связи между бластомерами, а также между бластомерами и желтком подтвердилось в опытах с инъекцией родаминдекстрана, красителя, который благодаря небольшим размерам молекул (17 Да) свободно проходит из желтка к бластомеры (Kimmel, Law, 1985). Вместе с тем оказалось, что более крупные молекулы техасского красного декстрана (2000 кДа) не способны свободно диффундировать между бластомерами, что указывает на ограниченный диаметр цитоплазматических мостиков, связывающих бластомеры и желток.

Дробление завершается образованием дискобластулы. После эпителизации клеток кроющего слоя бластомерная бластула становится эпителиальной. Дно бластулы выстлано синцитиальным перибластом, который связан с желтком. На стадии бластулы специфицируются только самые наружные клетки кроющего слоя, которые впоследствии дают внешний покров зародыша — перидерму.

На ранних этапах дробления деления синхронные. Например, у данио синхронными являются шесть первых делений. Позднее, когда на стадии бластулы происходит нормализация ядерно-цитоплазматического отношения, длительность клеточного цикла увеличивается, и синхронность клеточных делений утрачивается. Изменения длительности и структуры клеточного цикла коррелируют с началом зиготической транскрипции. Этот переломный момент в развитии называют точкой перехода на стадии средней бластулы (МВТР, midblastula transition point).

Важной особенностью стадии средней бластулы является то, что клетки зародыша приобретают способность к автономным движениям, а это создает предпосылки для начала морфогенетических процессов. Одним из первых событий, связанных с движением клеток, является обрастание желтка, в ходе которого бластодерма распространяется по направлению к вегетативному полюсу. Направленный рост бластодермы происходит по наружной поверхности желточного синцития с его развитой системой микротрубочек. Деполимеризация микротрубочек или их повреждение ультрафиолетом тормозят распространение бластодермы по желтку, обнаруживая тем самым важность микротрубочек в этом процессе.

Процесс обрастания желтка часто называют эпиболией, подчеркивая его функциональную близость одному из элементов гаструляции. Следует отметить, однако, что у костистых рыб обрастание начинается до наступления собственно гаструляции, отличительным признаком которой может служить формирование бластопора и первичной кишки. Обрастание желтка в эмбриональном развитии костистых рыб находится в прямой связи с меробластическим типом дробления и необходимостью утилизировать запасы питательных веществ, сосредоточенные в недробящейся части зародыша.

Начало гаструляции знаменуется образованием по периферии бластодиска зародышевого кольца, или краевого валика. Масса внутренних клеток, которая находится под слоем кроющих клеток, подразделяется на два зачатка — эпибласт, лежащий непосредственно под кроющим эпителием, и мезэнтодерму, находящуюся в контакте с желточным синцитиальным слоем. Обособление этих зачатков происходит различными способами. У Danio и многих других костистых рыб описана инволюция края бластодиска. У Fundulus гипобласт возникает путем ингрессии. У форели расслоение происходит вследствие центробежного движения части клеток внутренней массы.

Прослеживая судьбу маркированных клеток из разных областей ранней гаструлы, Ч. Киммель с сотрудниками (Kimmel etal., 1995) построили карту презумптивных зачатков данио. На анимальном полюсе располагаются клетки эктодермальной природы, потомки которых дают на вентральной стороне эпидермис, а на дорсальной стороне — органы чувств, головной и спинной мозг. В экваториальной области расположены клетки энтодермальной природы, формирующие глотку, печень и кишку. В промежуточной зоне находится мезодермальный зачаток, содержащий материал будущей хорды, сердца, сомитов и клеток крови. Судя по этой карте, на стадии ранней гаструлы уже в определенной степени предопределены дорсовентральная и передне-задняя оси.

Следующий этап гаструляции связан с образованием зародышевого щитка, который возникает в результате конвергенции клеток внутренней массы. Клетки и эпибласта и гипобласта начинают концентрироваться в зоне одного из меридианов экваториальной области. В результате широтного перемещения клеток, причины которого пока не раскрыты, в экваториальной области образуется утолщение — зародышевый щиток. Зародышевый щиток, или краевой узелок является гомологом спинной губы бластопора амфибий. При эктопической трансплантации он способен вызвать развитие вторичного зародыша, т. е. обнаруживает, как и спинная губа бластопора амфибий, свойства организатора.

В области зародышевого щитка происходит медиолатеральная интеркаляция клеток, в результате которой область щитка суживается, а сам этот зачаток вытягивается в длину. Конвергенция и растяжение материала, из которого формируется зародыш, четко прослеживаются при изучении характера экспрессии некоторых генов. Так, экспрессия гена по tail (ntl) первоначально наблюдается в области зародышевого кольца. Затем паттерн экспрессии меняет свой характер — зона экспрессии заметно суживается и сильно растягивается в длину по одному из меридианов в анимальной области зародыша, где происходит закладка осевой мезодермы. Экспрессия гена snaill (snal) происходит иначе. В период конвергенции этот ген экспрессируется в клетках зародышевого кольца, за исключением области зародышевого щитка. В фазе растяжения зародыша клетки, экспрессирующие snal, располагаются в виде двух полос параксиальной мезодермы, по обе стороны от осевой мезодермы.

В ходе гаструляции в области зародышевого щитка в первую очередь происходит инволюция материала головной энтодермы. Вслед за ним уходит материал хорды и продолжается перемещение энтодермальных клеток из боковых частей. Через боковые же участки происходит перемещение клеток будущей мезенхимы. Существенным отличием гаструляции костистых рыб от гаструляции амфибий является то, что у рыб не образуются ни вентральная, ни боковые губы бластопора. Инволюирующий в области краевого узелка пласт распространяется в переднем направлении, плотно вклиниваясь между наружным слоем и перибластом. Клетки, которые инволюируют позднее, занимают и периферию задней части бластодиска, образуя здесь мезодермальный зачаток.

Наряду с конвергенцией и растяжением, которые ведут к образованию осевых структур зародыша, в ходе гаструляции продолжается процесс эпиболии. Обрастание желтка происходит неравномерно. Быстрее всего оно идет в передней и латеральных областях бластодиска. В задней области, где продолжается инволюция клеток, эпиболия несколько замедлена. В результате обрастания поверхность перибласта и желтка оказывается покрытой внезародышевой эктодермой и мезенхимой, дающей начало желточной кровеносной системе. Таким образом образуется особый зародышевый орган — желточный мешок, обеспечивающий переработку и транспортировку созданного в период оогенеза запаса питательных веществ. Возникновение желточного мешка происходило в эволюции неоднократно и независимо у животных с такой организацией яйцеклетки, которая основана на сегрегации желтка и других питательных веществ в особой не дробящейся зоне.

Благодаря неравномерности обрастания (эпиболии) передний край диска, огибая желток, приближается к заднему концу зародыша, где некоторое время остается незакрытым небольшое округлое пространство, так называемая желточная пробка. Вскоре желточная пробка замыкается, и передний край бластодиска соединяется с задним концом зародыша.

После завершения эпиболии растяжение зародыша в переднем направлении заканчивается. Тем не менее рост зародыша продолжается в заднем направлении, благодаря чему возникает хвостовая почка — обособленный от желтка задний отдел зародыша.

Становление характерного для позвоночных плана строения тела продолжается и после гаструляции. Основными событиями постгаструляционного периода являются обособление и дифференциация хорды и нервной системы, а также сегментация тела. Процесс дифференциации тела зародыша происходит в передне-заднем направлении.

Сегментация затрагивает прежде всего параксиальные мезодермальные полоски, лежащие по обе стороны от хорды. Возникающие борозды последовательно, в переднезаднем направлении отделяют обособленные скопления мезодермальных клеток — сомиты. Число сомитов заметно варьирует у разных видов рыб. У данио оно достигает 30-34, у лосося — 63-64. В составе сомита у рыб имеются, по крайней мере, две субпопуляции клеток, образующие миотом мышечный зачаток и склеротом — зачаток скелетных структур. Возможно, в составе сомита рыб имеется и типичный для более высокоорганизованных позвоночных третий зачаток — дерматом, производные которого дают клетки дермы.

Дифференциация сомитов связана со сложными транслокациями клеток, значение которых пока остается невыясненным. Клетки, дающие мышечные элементы, в мезодермальной полоске локализованы в непосредственной близости от хорды и экспрессируют ген snal. После обособления сомита эти клетки мигрируют в латеральном направлении и дифференцируются как поверхностные мышцы («медленные» мышцы), тогда как оставшиеся в глубине сомита клетки дают «быстрые» мышцы. Клетки склеротома исходно располагаются в вентральной области сомита, но затем мигрируют в дорсальном направлении, достигают уровня хорды, где впоследствии участвуют в образовании позвонков.

В конце гаструляции нейроэктодерма принимает вид нервной пластинки, образованной столбчатыми клетками. На стадии нейрулы симметрично расположенные левая и правая полосы пластинки сближаются и образуют плотное скопление нейральных клеток — нейральный киль. При этом клетки, расположенные на латеральной границе пластинки, занимают дорсальное положение, а клетки центральной области пластинки оказываются в вентральном положении. Позднее нейральный киль округляется и принимает вид цилиндрического стержня, проходящего по медиальной линии вдоль тела зародыша. Наконец, путем расхождения клеток, или кавитации (от лат. cavitas — полость) образуется полая нервная трубка.

На переднем конце нервная трубка несколько расширена. У данио на стадии 18 сомитов передний оnдел нервной трубки, который образует головной мозг, подразделяется небольшими перетяжками на 10 участков, нейромеров. Два передних нейромера представляют собой зачатки переднего мозга, соответственно конечного (telencephalon) и промежуточного (diencephalon) мозга, третий нейромер — зачаток среднего мозга (mesencephalon), наконец, семь задних нейромеров относятся к заднему мозгу (rhombencephalon) и называются ромбомерами.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

www.activestudy.info

Этапы эмбриогенеза у рыб

Подробности Автор: Super User

Опубликовано: 09 Май 2016

Просмотров: 966

Время прохождения различных этапов эмбриогенеза зависит от температуры воды.  Инкубация длится 68-73 сут. Общее значение необходимой для инкубации температуры определено для каждого вида лососей  и называется интегральной температурой, которая выражается в градусо-днях (сумма среднесуточных температур  за период  инкубации). Курсовые на заказ, курсовая на заказ.

Оптимальными температурами для развития симы являются температуры в диапазоне  от 10-12°С  до 6-4°С

Характеристика   основных этапов  эмбрионального развития симы       

                           Характеристика этапов    Темпера-

   тура  воды,°С Градусо-

дни        Длитель-

ность

этапа,

сутки

I этап – образование зародышевого диска, продолжается от оплодотворения до стадии дробления зародышевого диска, процесс продолжается в течении 2-х часов после оплодотворения. Возрастает прочность оболочки. Курсовые на заказ, курсовая на заказ.

Нижняя поверхность желточного мешка прилипает к оболочке. II этап-дробление зародышевого диска. Продолжается от начала дробления до формирования «бластомерной бластулы». По мере дробления происходит постепенное уменьшение бластомеров и относительное  увеличение  их  поверхностей. Толчки, удары вызывают повреждение поверхности желточного мешка и истечение его содержимого в перивителлиновое  пространство. III этап-образование бластулы. Продолжается от образования «бластомерной  бластулы» до начала гаструляции. Происходит образование выпуклого наружного клеточного слоя, представляющего купол зародышевого диска. Полость бластулы заполнена рыхло расположенными клетками. VI этап- образование зародышевых пластов. Продолжается от начала гаструляции до образования первых мезодермальных сегментов.  Начинается обрастание  яйца бластодермой. Поверхность  бластодиска становится плоской. Его края утолщаются, особенно в месте формирования «краевого узелка»-верхней губы бластопора. По мере обрастания «краевой узелок» увеличивается , превращаясь в «краевой язычок»-зародышевую пластинку. Образуются зародышевые пласты, хорда.  В конце этапа начинают формироваться отделы мозга. Vэтап- формирование головы и туловища зародыша. Продолжается  от появления первых  сегментов до формирования 46-47 сегментов. В начале этапа дифференцируются  отделы мозга,  появляются зачатки глаз, немного позже – зачатки  слуховых пузырьков. В течении этапа формируется хвостовая почка. Вся сегментированная часть тела зародыша соединена с поверхностью желточного мешка. В связи с этим  прекращается  прилипание поверхности  желточного мешка к оболочке. VI этап- обособление задней части тела зародыша от поверхности желточного мешка. Формируется 45-65 сегменты. Сердечная трубка изогнута. Становятся заметными слабые пульсации сердца. Намечается дифференцировка жаберных крышек. Курсовые на заказ, курсовая на заказ. Впереди глаз появляются зачатки обонятельных плакод.  На стадии 58 сегмента задняя часть тела зародыша отделяется от  поверхности желточного мешка. Формируется заднепроходное отверстие.  Зародыш производит судорожные  движения. К концу этапа задняя часть туловища зародыша до 29 сегмента отделяется от поверхности  желточного мешка.  Заканчивается процесс обрастания  желточного мешка бластодермой. VII этап-этап безгемоглобинового кровообращения в сосудах подкишечно-желточной системы. Формируются 65-71 сегменты.  Передняя часть головы начинает отделяться  от поверхности желточного мешка. Возникают зачатки грудных плавников.  Становится заметным слабый ток крови в сосудах. Кровь содержит мало форменных элементов, бесцветна. На поверхности  желточного мешка появляются кровяные  островки.VIII этап-этап гемоглобинового кровообращения в сосудах подкишечно-желточной системы и возникновения кардинальных вен. В крови появляется  много форменных элементов и гемоглобин. Дифференцируются первичные почки. Возникает зачаток печени, начинают  функционировать сосуды печеночно-желточной системы. Появляется пигмент в глазах.  Число сегментов достигает наибольшего числа-73 (42 туловищных и 31 хвостовых сегмента).  Голова отделяется от поверхности  желточного мешкаIX этап-этап печеночно-желточной  системы кровообращения. Сосудистая сеть желточного мешка получает кровь через печеночно-желточную вену. К  концу этапа сеть сосудов покрывает всю поверхность желточного мешка. Формируются сегментные сосуды и сеть сосудов на голове. Устанавливается  жаберное кровообращение. Жаберная крышка прикрывает первую жаберную дужку. В слуховых пузырьках появляются отолиты и начинается дифференцировка полукружных каналов.  Глаза становятся пигментированными. Задние хвостовые сегменты распадаются, их число начинает сокращаться. Число туловищных сегментов прежним ─ 40-41; число хвостовых сегментов уменьшается до 26-28.X этап- этап диффенцировки верхних конусов  сегментальной мускулатуры. Появляются зачатки брюшных и непарных (спинного и анального ) плавников. Зародыши начинают двигать грудными  плавниками. Возникают меланофоры на туловище и голове. В конце этапа на жаберных дужках начинают дифференциро-ваться  жаберные лепестки. Ротовая воронка углубляется . Формируются верхние и нижние конусы миотомов. Число хвостовых сегментов уменьшается до 22-23. В желточном мешке мелкие жировые капли начинают сливаться, образуя крупные.  Зародыши энергично двигаются в оболочках. XI этап- этап формирования  ротового отверстия. В течение этого этапа зародыши выходят из оболочек.  Курсовые на заказ, курсовая на заказ. Ротовая воронка прорывается. Формируется ротовое отверстие. Появляются  зачатки верхних и нижних челюстей.  Рот становится  слабо подвижным. Возникает дыхательная функция рта. Жаберная крышка почти полностью прикрывает жаберные дужки. На верхней поверхности головы  и туловища оранжевый пигмент. Железы вылупления покрывают нижнюю и боковые поверхности головы  и переднюю поверхность желточного мешка. Оболочка под действием секрета желез  вылупления размягчается, ее прочность уменьшается,  что облегчает выход зародыша из оболочки. В конце этапа рот становится органом дыхания, подающим воду к жаберным дужкам. На месте будущих спинного, анального и хвостового плавников в плавниковой складке начинает диффенцироваться  скелетогенная ткань и мышцы.  Начинается образование перемычки, разделяющей отверстие обонятельной ямки на переднее и заднее. Курсовые на заказ, курсовая на заказ.

В слуховых пузырьках сформированы полукружные каналы. Органы боковой линии имеют вид бугорков. Глаза пигментированы, неподвижны. Зародыши  не реагируют на свет. На ток воды реагируют слабо. Они лежат на боку и непрерывно двигают грудными плавниками.

ХII этап- этап формирования непарных и брюшных плавников. В начале этапа дифференцируется вторичная почка. В течении этапа происходит выделение непарных плавников из общей плавниковой складки. Плавниковая складка начинает резорбироваться. Дифференцируется скелет и мускулатура непарных плавников.  В конце  этапа формируется скелет и мускулатура  брюшных плавников.  Желточный  мешок  становится  удлиненным. В конце  этапа  его объем  сокращается наполовину по  сравнению с его объемом в начале этапа.  Уменьшается дыхательная поверхность  желточного мешка.  Возрастает значение жаберного аппарата как органа дыхания.  Развивается  жаберная крышка, усиливается ее присасывающая функция.  Из нижнего,  в начале этапа, рот становится  конечным в конце его. На челюстях прорезываются зубы. На свет зародыши  реагируют отрицательно. Они сбиваются в кучи,  наслаиваются друг на друга, имеют положительную реакцию на ток воды.

 

p-cap.ru

Эмбриональный период развития карпа

Карп откладывает икру на расти­тельность в стоячей или слабопроточной воде при температуре обычно 17 °С и выше. Его развитие в раннем периоде онтогенеза проходит в этих условиях и приспособлено к ним. Икра обычно желтого цвета, но встречаются икринки с зеленова­тым оттенком, бесцветные и др. Средний диаметр икры 1,5-1,8 мм с небольшим перивителлиновым пространством (относительные разме­ры 1,25-1,4 мм), она полиплазматическая. По количеству цитоплазмы занимает одно из первых мест среди икры рыб семейства карповых. Диаметр желточного мешка в среднем 1,2 мм. Оболочка икры клейкая. Продолжительность развития икры карпа до вылупления эмбрионов зависит, прежде всего, от температурных условий. Однако для развития икры и вылупления необходимо, как установлено, опреде­ленное количество тепла. Для карпа этот показатель составляет 60- 80 градусо-ч.

Продолжительность развития икры рыб находится в зависимости от темпе­ратуры воды. Продолжительность эмбрионального развития икры карпа в зависимости от температуры приведена в таблице 1 (по данным Ф. М. Суховерхова и А. П. Сиверцева).

 

Таблица 1 - Продолжительность эмбрионального развития икры карпа в зависимости от температуры воды

Температура воды, °С Продолжительность инкубации, сут
2,5 -3
3,5 -4,0
4,5 -5,0
7,0 -7,5
Ниже 16 более 8

 

Эмбриональный период развития карпа состоит из семи этапов (по Лужину, 1976).

На первом этапе происходит оплодотворение, образование зиготы и образование перивителлинового пространства и бластодиска (рис. 27 а, б).

У неоплодотворенной икринки (рис. 27, а) оболочка плотно прилегает к желтку. Через несколько минут после оплодотворения в икре, находящейся в воде, происходят изменения, связанные с про­никновением воды в икринку. Это приводит к отслоению оболочки от желтка, образованию перивителлинового пространства. Процесс набухания икры при температуре 19 °С длится примерно один час. Диаметр икры увеличивается в среднем на одну треть. Одновременно в период набухания образуется зародышевый диск, или бластодиск (рис. 27, б).

Активация икринок, вызванная оплодотворением, приводит к глубоким изменениям обмена веществ. В течение первого часа после оплодотворения, когда наступает резкое оводнение икринок, относи­тельное содержание сухих веществ снижается с 30-32 до 10-12 % и примерно в таком количестве остается до вылупления эмбриона. Содержа­ние гликогена - основного источника энергии в период образования бластодиска - уменьшается в 2 раза, а величина аденозинтрифосфорной кислоты (АТФ), занимающей центральное место в энергетическом обмене, снижается почти в 3 раза.

На втором этапе происходит дробление бластодиска от двух бластомеров до бластулы. В возрасте трех часов наступает первая стадия этапа дробления - появляется первая борозда, деля­щая бластодиск на два бластомера (рис. 27, в), а затем наступают стадии четырех (рис. 27, г), восьми (рис. 27, д) бластомеров и т.д.

Через 6 ч от момента оплодотворения наступает стадия морулы крупных клеток (рис. 27, е). Далее клетки бластодиска все больше дробятся. Наступает стадия морулы мелких клеток. Между бластодиском и желтком возникает небольшая полость или бластоцель и образуется стадия бластулы (рис. 27, ж). Бластула - это своеобразное многоклеточное образование – бластодерма, расположенная на анимальном полюсе.

В целом процесс дробления сопровождается значительными внутренними энергетическими затратами. За этот период показатель АТФ снижается почти в два раза.

 

Обозначения по тексту

Рисунок 27 - Эмбриональный период развития карпа

В рыбоводной практике на стадиях 4-8 бластомеров второго этапа развития дают оценку качества икры по нормальному дроблению. Образование разноразмерных, асимметрично расположенных бластомеров свидетель­ствует об аномальном развитии икры. Именно на стадиях дробления от 4- 8 бластомеров до ранней морулы определяют и процент оплодотво­рения икры.

На третьем этапе происходит обрастание желтка бластодер­мой - гаструляция и формирование эмбриона. Гаструляция начинается с обрастания желтка многослойной бластодермой. Через 8-9 ч полови­на желтка оказывается схваченной бластодермой (рис. 27, з). Появляет­ся зародышевый валик, который на стадии замыкания желточной пробки (рис. 27, и) виден весьма отчетливо. У тела эмбриона заметен расширенный головной отдел. Желточная пробка замыкается. Гастру­ляция завершается полным обрастанием бластодермой всего желтка.

Во время гаструляции происходит существенная структурная перестройка, в результате которой образуются три зародышевых листка: эктодерма, мезодерма и энтодерма. Обмен веществ во время гаструляции имеет свои особенности. После гаструляции количество фосфора АТФ и небелкового азота снижается, а количество общего бел­ка увеличивается. Процесс гаструляции является наиболее уязвимым к воздействию факторов внешней среды. Гаструляция всегда сопро­вождается повышенной гибелью икры. Поэтому учет отхода целесо­образно проводить после прохождения этого этапа развития, а не раньше.

На четвертом этапе происходит дифференциация головного и туловищного отделов эмбриона. Наблюдается утолщение головной и хвостовой частей эмбриона. Через 17-20 ч от оплодотворения икры тело эмбриона охватывает около 3/5 окружности желтка. Начинается сегментация тела. В туловище образуются первые два-три сомита (рис. 27, к). В возрасте 22-24 ч формируются глазные пузырьки при продолжающейся сегментации тела (рис. 27, л). Через 24-28 ч за глазны­ми пузырями в области продолговатого мозга появляются слуховые плакоды (рис. 27, м). Количество сомитов достигает 9-11. Глазные бокалы (зачатки глаз) приобретают щелевидные углубления.

На пятом этапе обособляется хвостовой отдел и эмбрион начинает двигаться. В результате обособления хвостового отдела и роста в длину зачатка кишечной трубки желток приобретает груше­видную форму. Через 35-45 ч в глазах отчетливо виден хрусталик (рис. 27, н). Количество сомитов продолжает увеличиваться (более 20). Тело эмбриона совершает слабые движения. В возрасте немногим более двух суток наблюдается сегментация хвостового отдела. К этому времени сегментация тела почти заканчивается. В глазах появляется черный пигмент. Различаются отделы головного мозга. В слуховых капсулах образовываются отолиты (рис. 27, о). При обособле­нии хвостового отдела и пигментации глаз наступают определенные изменения в обмене веществ: показатель АТФ вновь возрастает до исходной величины, однако содержание белка и небелкового азота остается прежним, как при гаструляции.

На шестом этапе в возрасте 2,5 сут у эмбриона появляются форменные элементы крови. Число сомитов в туловище 24, в хвосто­вом отделе - 16. Глаза пигментированы (рис. 27, п). Сформировалась кожная жаберная крышка. Голова пригнута к желтку. На рыле, перед глазами появились обонятельные ямки. Снизу образовалась ротовая воронка. Позади глаз появились четыре жаберные плакоды. На уровне первого миотома располагается грудной плавничок. Эмбрион активно вращается в оболочке – стадия вращающегося эмбриона.

Эта стадия эмбрионального развития карпа, как и других рыб, наиболее подходит для перевозки икры в условиях изотермических ящиков, где возмож­но некоторое охлаждение, способствующее замедлению развития.

На седьмом этапе происходит вылупление из оболочки. Это последний этап эмбрионального периода развития. Через трое суток инкуба­ции икры при температуре 19-22 °С начинается вылупление эмбрионов (рис. 27, р).

Эмбрионы рыб в процессе эмбрионального развития проходят ряд критических этапов и стадий, когда наблюдается повышенная чувствитель­ность эмбрионов к различным абиотическим факторам среды (темпера­туре, газовому составу воды, солености, механическому воздействию и др.). Это связано с тем, что в критические этапы и стадии развития происходят значительные изменения в перестройке обмена веществ развивающегося эмбриона.

Критическими в развитии эмбриона карпа, как у боль­шинства нерестящихся весной рыб, являются следующие этапы и стадии:

- от начала дробления до морулы мелких клеток;

- гаструляция;

- перед вылуплением и вылупление.

Именно на этих стадиях эмбриогенеза, наблюдается повышенная гибель эмбрионов. В эти моменты необходимо особенно стремиться к созданию оптимальных условий для развития икры: поддерживать в инкубационных аппаратах постоянный и повышенный расход воды, не допускать резких (более 2 °С) температурных перепадов, оберегать икру от различных механических воздействий и т. д.

Похожие статьи:

poznayka.org

1.3. Эмбриогенез радужной форели

В эмбриональном развитии радужной форели различают семь этапов:

Первый этап – образование перивителлинового пространства – бластодиска. Длительность этого этапа и всех последующих зависит от температуры воды. Особенно интенсивно процесс прохо­дит в первые 1-2 ч, после чего с определенными предосторожностями икру можно перевозить и загружать в инкубацион­ные аппараты.

Второй этап – дробление бластодиска. Дробление бластодиска может начаться уже через 8 ч (температура 13°С), когда образуется стадия двух бластомеров, затем число бластомеров удваивается. В конце этапа наблюдается перегруппировка жировых капель, укрупне­ние и сосредоточение их на анимальном полюсе. Завершается этап образованием эпителиальной бластулы. Общая продолжи­тельность этапа при температуре 6-7°С составляет 6 суток.

Третий этап – гаструляция. Этот этап характеризуется интенсивным обрастанием желтка бластодиском – гаструлой и при достижении 1/10 его поверхности об­разуется краевой узелок, который превращается в зародыше­вый язычок при обрастании желтка наполовину.

Четвертый этап – образование за­родышевого валика (тела эмбриона). Происходит образо­вание и дифференцировка отдельных органов, сегментация ту­ловища. Образуются мозговые, слуховые и глазные пузыри. Тела зародыша занимает половину окружности желтка.

Пятый этап – замыкание желточной пробки и отделение зачатка хвосто­вого отдела. По продолжительности он несколько ко­роче четвертого этапа. Образование хвостовой почки и ее рост следует после закрытия желточной пробки и замыкания бластопора. Появляются зачатки грудных плавников, жаберные дужки, сердечная трубка, образуется гемоглобин в эритроци­тах, отмечено движение зародыша.

Шестой этап – пигментация глаз и начало пульсации сердца. Образуется печень, начинается кровообращение, к концу этапа появляются рото­вая щель, глаза хорошо пигментированы, на теле заметны меланофоры, образуется анальное отверстие. Завершается рост эмбриона, образуются зачатки брюшных и непарных плавников.

Седьмой этап – выклев. Выклев может произойти за 3 дня и растянуться до 1 месяца. На длительность выклева оказывают преобладающее влияние температура и гидрохимический состав воды. На этом этапе образуется рот, появляются железы вылупления.

Эмбриональное развитие радужной форели подразделяют на различное количество стадий – от 14 до 31.

Развитие форели происходит более равномерно и с мень­шими отклонениями при постоянной температуре воды. Коле­бание температуры в течение суток отрицательно сказывает­ся на эмбриогенезе. Чем интенсивнее икра окрашена каротиноидными пигментами, т.е. чем она оранжевее, тем более стойко выдерживает изменение температуры. В то же время в икринках разного размера, но с различной интенсивностью окраски процессы морфогенеза в период развития протекают одинаково (Е.Ф. Титарев, 1980).

У радужной форели, как и у всех рыб, существуют критические периоды в развитии эмбрионов, которые характеризуются высокой чувствительностью клеток зародышей к действию внешних агентов. На протяжении эмбриогенеза особо чувствительными яв­ляются периоды дробления, обрастания и начала формирования эмбриона, образования хвостовой почки и отделения хвоста, начала пигментации глаз, сегментации хвоста и начала дви­жений и особенно перед выклевом.

В зависимости от вида рыб икра лососевых инкубируется в относительно широком диапазоне температур – от 0,1 до 10 °С, поэтому правильный выбор температурных условий позволяет управлять скоростью развития эмбрионов, а следовательно, и продолжительностью эмбриогенеза (И.С. Мухачев, 2005).

studfiles.net

Эмбриогенез миног, хрящевых ганоидов и земноводных — Мегаобучалка

Этим группам животных свойственны общие черты дробления, гаструляции и нейруляции. Дробление яйцеклетки полное, неравномерное (рисунок 3).

 

1–бластомеры; 2 – амфибластула; 3 – бластоцель;4 –бластодерма; 5 – крыша бластулы; 6 –дно бластулы.

Рисунок 3–Последовательность (I–VI) дробления яйцеклетки миноги

 

Две первые борозды дробления идут меридиально, начинаются с анимального полюса, а третья борозда проходит вблизи, но экваториально. Бластомеры анимального полюса мельче бластомеров вегетативного полюса. Дробление анимальных и вегетативных бластомеров до седьмого дробления проходит почти синхронно, затем обе половины зародыша начинают дробиться асинхронно. Кроме указанных борозд дробления, появляются тангенциальные борозды, поэтому стенка образующейся бластулы состоит из нескольких рядов клеток.

В результате неравномерного дробления бластомеры вегетативного полюса, содержащие много желтка, образуют стенку бластулы – бластодерму. Бластоцель располагается ближе к анимальному полюсу. Образовавшаяся бластула называется амфибластула.

В амфибластуле различают крышу, соответствующую анимальному полюсу, состоит из 1–3 рядов клеток, дно, соответствующее вегетативному полюсу, насчитывает 11 – 13 рядов клеток, и экваториальную зону, содержащую 3 – 5 рядов клеток.

Гаструляция осуществляется путем инвагинации и эпиболии. Начинается инвагинация бластодермы в экваториальной зоне, несколько ниже дна бластоцеля. Впячивание наступает после появления небольшого углубления серповидной формы, или серповидной бороздки, которое выпуклостью направлено в сторону анимального полюса. Серповидная бороздка формирует спинную губу бластопора. Клетки бластодермы анимального полюса, т. е. будущей эктодермы, интенсивно размножаются и начинают наползать на клетки вегетативного полюса, обрастая их с поверхности, за исключением клеток бластодермы в области серповидной бороздки и ниже последней. Интенсивное размножение клеток бластодермы в области анимального полюса обеспечивает также перемещение клеточного материала с поверхности внутрь зародыша в процессе инвагинации. Через дорсальную губу бластопора впячивается сначала клеточный материал энтодермы и прехордальной пластинки, т. е. тот материал, который располагается перед клеточным материалом хордального зачатка. Далее инвагинирует материал хорды и по бокам энтодермы. Дно серповидной бороздки в виде двойной складки впячивается в бластоцель в направлении анимального полюса параллельно бластодерме. Полость первичной кишки, ограниченная клетками энтодермы, увеличивается и резко суживает бластоцель. Бластоцель тонкой клеточной перегородкой внутреннего зародышевого листка сначала отделен от гастроцеля, затем клетки энтодермы расходятся, и обе полости соединяются в единую полость первичной кишки.

По мере инвагинации клеточного материала в бластоцель серповидная щель увеличивается и приобретает подковоподобную форму, т. е. образуются боковые губы бластопора. Затем бластопор приобретает кольцевидную форму – возникает вентральная, или брюшная, губа бластопора. Кольцевидная форма бластопора обусловлена тем, что в его центральной части располагаются крупные, богатые желтком бластомеры вегетативного полюса бластулы, которые из-за своих размеров не могут инвагинировать в бластоцель. Поэтому инвагинация материала осуществляется лишь по периферии их, и бластопор имеет вид узкой кольцевидной щели. К моменту образования вентральной губы бластопора почти вся энтодерма инвагинирует и лишь незначительная ее часть находится на поверхности в центре бластопора. Бластомеры, располагающиеся в центральной части бластопора, очень богаты желтком, в связи с чем они получили название желточной пробки (рисунок 4).

 

 

 

I – амфибластула; II– III – гаструляция; IV – нейрула;

1 – эктодерма; 2–энтодерма; 3 – хорда; 4– мезодерма; 5 – нервная пластинка;

6– верхняя и 7 – нижняя губа бластопора; 8– бластопор; 9– гастроцель; 10– нервная трубка; 11–нервный канал; 12–сегментированная мезодерма; 13–несегментированная мезодерма; 14–желточная энтодерма (желточная пробка)

Рисунок 4–Эмбриогенез земноводных

Материал сегментированной мезодермы – сомитов инвагинирует через боковые губы, а клеточный материал несегментированной мезодермы – спланхнотомы – через нижнюю губу. Вследствие инвагинации большого количества клеточного материала, клетки эктодермы изменяют свое первоначальное положение. Клеточный материал будущей нервной пластинки растягивается по всей анимальной поверхности зародыша, а анимальный полюс оказывается на переднем конце зародыша, напротив бластопора. На ранних стадиях инвагинации клеточный материал будущей хорды обособляется от энтодермы и хордальная пластинка сразу же сворачивается в продольный тяж – хорду, которая отрывается от первичной кишки, а последняя на верхней стороне остается некоторое время несомкнутой. Свободные края кишечной энтодермы быстро восстанавливают дефект, разрастаясь под хордой, и стенка первичной кишки становится сплошной.

С самого начала инвагинации клетки сегментированной мезодермы не входят в состав клеточного материала первичной кишки, а впячиваются через бластопор самостоятельно, располагаясь между эктодермой и стенкой первичной кишки. Сегментированная мезодерма образует по бокам хорды скопления клеток – сомиты. Несегментированная мезодерма также внедряется между эктодермой и стенкой первичной кишки, образуя спланхнотомы, которые лишены сегментации. Связь между сегментированной и несегментированной мезодермой осуществляется при помощи сегментных ножек, или нефротомов. Несегментированная мезодерма с обеих сторон подрастает под энтодерму первичной кишки, затем соединяется, образуя общую целомическую полость. После этого зародыш становится трехслойным.

Образование осевых органов у миног, хрящевых ганоидов и земноводных начинается уже в конце процесса гаструляции с обособления материала хорды. Одновременно с возникновением хорды эктодерма образует нервную пластинку, по краям которой возникают утолщения в виде нервных валиков. Остальная часть эктодермы представляет собой кожную эктодерму. Затем нервная образует нервный желобок, а нервные валики поднимаются, сближаются и при образовании нервной трубки сливаются в единую непарную ганглиозную пластинку. Нервная трубка и ганглиозная пластинка погружаются внутрь зародыша, а сверху их обрастает кожная эктодерма.

При обособлении сомитов сначала возникает третья пара сомитов, далее процесс сегментации распространяется спереди назад, а первые две пары сомитов возникают позднее. Центральная часть сомита дифференцируется в мышечную пластинку, или миотом, из которой впоследствии развивается поперечнополосатая мышечная ткань скелетного типа. Часть сомита, прилежащая к хорде и нервной трубке, дифференцируется в скелетный листок, или склеротом, из которого развивается осевой скелет и скелет конечностей. Верхнебоковая часть сомита, которая прилегает к эктодерме, превращается в кожную пластинку, или дерматом, образующий основу кожи.

Нефротомы участвуют в образовании канальцев почки, а спланхнотомы, расщепляясь на два листка – париетальный и висцеральный, образуют билатеральные целомические полости, сливающиеся затем в общую вторичную полость тела. Висцеральный листок спланхнотома принимает участие в образовании стенки кишки, сердца, он же образует висцеральный листок брюшины, плевры, сердечной сорочки, а париетальный – пристеночный листок серозных оболочек указанных полостей тела,

 

megaobuchalka.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..