Наименьшее число хромосом: самки подвида муровьев Myrmecia pilosula имеют пару хромосом на клетку. Самцы имеют только 1 хрососому в каждой клетке.Наибольшее число: вид папоротников Ophioglossum reticulatum имеет около 630 пар хромосом, или 1260 хромосом на клеткуВерхний предел числа х-м не зависит от количества ДНК которое в них входит: у американской амфибии Amphiuma ДНК в ~30 раз больше, чем у человека, которая помещается в 14 хромосомах. Самая маленькая хромосома амфибии больше самых крупных хромосом человека --> большое количество ДНК может не влиять на увеличение числа хромосом.

Нет верхнего предела ограничивающего количество хромосом: бабочка Lysandra nivescens n=140-141 хромосома.Существует минимальная масса хромосомы необходимая для расхождения хромосом в митозе - критическая масса. Наличие такой массы может частично объяснить избыточность ДНК.

www.cellbiol.ru

 

Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Как хромосомы определяют пол потомства у человека и животных? Хромосомы рыбы


Эволюция кариотипов рыбообразных и рыб

Число хромосом у рыбообразных и рыб изучали многие исследователи. К настоящему времени число хромосом определено для более чем 1700 видов. Хромосомные наборы оказались очень разнообразными, диплоидные числа варьируют в пределах от 12 до 250. Еще более изменчиво суммарное количество ДНК, содержа­лся в клеточном ядре; оно возрастает (при расчете на гаплоидный кариотип) от 0.4 пг (0.4 X 10-12г) у одного из представителей семейства иглобрюхих (Tetraodontidae) до 163 пг у двоякодышащих, т. е. в 400 раз.

Такую необычайную изменчивость можно объяснить тем, что рыбы и круглоротые представляют собой древнюю, весьма гетерогенную группу животных, дивергировавшую за сотни миллионов лет в самых разнообразных направлениях.

Рассмотрим теперь закономерности эволюционных преобразо­ваний кариотипа в отдельных наиболее изученных таксонах.

Данных по круглоротым (Cyclostomata) недостаточно для ка­ких-либо обобщений. Можно лишь отметить, что две группы - миксины и миноги - сильно разошлись в ходе эволюции. У миксин (Myxinidae) найдено небольшое число хромосом при значи­тельном содержании ДНК, у миног (Petromyzoniformes), наоборот, хромосом много, особенно у обитателей северного полушария, но количество ДНК невелико.

Среди собственно рыб (Pisces) наиболее примитивные группы, и частности хрящевые (акулы, скаты, химеры), эволюционировали и сторону увеличения числа хромосом и параллельного увеличения количества ДНК. У некоторых скатов кариотип состоит почти из 100 хромосом; исключение представляет только электрический скат из сем. Torpedinidae - Narcinе brasiliensis с 28 хромосомами. У всех хрящевых рыб, за исключением химер, увеличено содержание ДНK в ядрах клеток - оно составляет от 2.8 до 16.2 пг на гаплоидный набор.

У двоякодышащих (Dipnoi) эволюция кариотипа шла в направлении очень значительного увеличения количества ДНК в ядре – у современных видов оно составляет от 80 до 160 пг. Вместе с тем число хромосом у них невелико.

Изучение величины клеток у ископаемых предков современных двоякодышащих показало, что она возрастала постепенно, но неуклонно. Параллельно увеличивалось и содержание ДНК в ядрах. Вероятно, это связано с тем, что двоякодышащие имеют дополнительный орган дыхания, позволяющий переходить на дыхание атмосферным воздухом. Сосуществование двух механизмов дыхания требовало большой пластичности физиологических процессов и многократное увеличение количества ДНК обеспечивало организм необходимым количеством разнообразных ферментов. Усиливавшаяся специализация двоякодышащих и ограниченность пригодных для их жизни экологических ниш (неглубокие заиленные, хорошо прогреваемые пресноводные водоемы) способствовали уменьше­нию числа хромосом и созданию тем самым более устойчивых генных комплексов.

Хрящевые ганоиды (сем. Acipenseridae и Polyodontidae) имеют много хромосом и довольно значительное количество ДНК, в этом отношении они похожи на селяхий. Возможно, что такое развитие кариотипа связано с образом жизни и размерами рыб, в частности с их большой подвижностью и способностью к быстрому росту. Эти две группы рыб объединяет еще одна особенность - наличие у многих из них мелких точечных микрохромосом. Роль микрохромосом выяснена вообще недостаточно, хотя некоторые кариологи предполагают, что они содержат «избыточный» генети­ческий материал, используемый в случае необходимости усилен­ного синтеза белков. Число таких хромосом в наборе может варьировать; их наличие можно рассматривать как своеобразный механизм увеличения хромосомной изменчивости без нарушения целостности основного генома.

Семейство осетровых по числу хромосом и содержанию ДНК в ядре распадается на две группы. К одной принадлежат много­хромосомные осетры (Acipenser guldenstadti, A. baeri, А. nассаrii) к другой - белуга и калуга (род Huso), стерлядь, шип и севрюга (A. ruthenus, A. stellatus, A. nudiventris), лопатонос (Scaphirhynchus platorhynchus), а также за­падноевропейский осетр (A. sturio), имеющие вдвое меньшее число хромосом.

Надо отметить, что имеются разногласия относительно метода подсчета хромосом у осетровых рыб: одни кариологи учитывают все микрохромосомы, другие не принимают их в расчет. Несмотря на эти разногла­сия, наличие двух кариологических групп в семействе осетровых несомненно.

Различия между этими группами в количестве ДНК на геном и в величине эритроцитов свидетельствуют в пользу гипотезы о полиплоидном происхождении некоторых видов сем. Acipenseridae. Имеются доказательства полиплоидного происхождения и американского веслоноса Polyodoii spathula, Polyodontidae.

 

Интересны пути эволюции кариотипа в отрядах сельдеобразных (Clupeiformes) и лососеобразных (Salmoniformes).

Сельди, анчоусы и близкие к ним семейства в основном, сохранили числа хромосом (2n от 48 до 52), характерные для предков современных костистых рыб, однако некоторые виды представляют исключение. У рыбы из сем. Gonostomatidae - Гоностомовые (Gonostoma bathyphllum) - семейство глубоководных рыб из отряда стомиеобразных, или иглоротов (Stomiiformes), обнаружено всего 12 крупных хромосом. Это пока самое малое число хромосом, найденное у рыб. В том же роде у другого вида, G. elongatum, набор состоит из 48 хромосом. Судя по наличию в мейозе шести кольцевых тетрад, большие хромосомы G. bathyphilum образовались в результате нескольких центрических слияний. Хромосомный комплекс этого вида напоминает хромосомный набор растения дурмана (Oenothera), характеризующийся постоянной структурной гетерозиготностью генома.

В отряде лососеобразных(Salmoniformes) выделяются по своим кариотипам лососевые (Salmonidae) и хариусы (Thymallidae). Можно считать доказанным, что все рыбы этих семейств в конце третичного или в начале четвертичного периодов прошли через удвоение своего хромосомного набора. У исходного (вероятно, общего для всей группы) тетраплоида должно было быть около 96-100 хромосом. В дальнейшем, в процессе расселения лососей, сигов и хариусов, шла дивергенция кариотипов, сопровождавшаяся вторичной диплоидизацией генома. Число хромосом у всех видов, за исключением хариусов, уменьшилось в той или иной степени. О полиплоидности лососей и сигов говорят и генетические данные, а именно наличие в геноме большого числа дуплицированных локусов.

Дивергенция лососевых привела к очень большому разнообразию кариотипов даже в пределах одного рода. Так, у тихоокеанских лососей (Oncorhynchus) число хромосом меняется в пределах от 74 у кеты до 52 у горбуши; число плеч (N. F.- фундаментальное число) остается при этом почти неизменным. Считается, что почти все хромосомные перестройки, происходившие при дивергенции Oncorhynchus, относятся к типу центрических слияний (робертсоновских транслокаций). Кета рассматривается как вид, наиболее близкий к исходной форме, имевшей около 100 акроцентрических хромосом. Самым «продвинутым» (по кариотипу) видом следует считать горбушу, имеющую только метацентрические хромосомы.

Диплоидные числа у представителей рода Salmo варьируют и пределах от 80-82 до 54, число плеч, однако, уменьшено только у трех видов: S. trutta, S. ischchan и S. salar. Большой интерес представляет кариотип S.salar (лосось атлантический). У европейского атлантического лосося большинство исследователей находят 58 хромосом. В отношении лосося американского побережья имеются разногласия. Были обнаружены различия по числу хромосом между различными американскими популяциями от 54 до 56 хромосом. Вероятно, эти различия можно объяснить робертсоновскими транслокациями, так как число плеч остается почти постоянным (72). Отличия могут быть связаны также и с ошибками исследований. В целом, можно считать, что атлантический лосось претерпел больше всего хромосомных перестроек - не менее 37-40. Большая внутривидовая изменчивость по числу хромосом наблюдается и у американского пресноводного лосося S. Clarki ( 2n=64, 66, 68; N. F. = 104).

Род Salvelinus (гольцы) дивергировал в более слабой степени, предполагается, что эта дивергенция началась позднее (до или после первого ледникового периода) и еще не завершилась. Морфологическое изучение гольцов позволяет предполагать, что они произошли от сходной с Salmo trutta (кумжа) формы.

Среди современных гольцов (Salvelinus) выделяются большим разнообразием как по кариотипам, так и по своим морфобиологическим особенностям многочисленные североазиатские представители видов S. alpinus и S. malma, у многих из них диплоидное число хромосом сильно варьирует (табл. 1).

Среди сигов (род Coregonus) многие виды имеют 80 хромосом; у некоторых сигов число хромосом уменьшено до 78-74; только один вид, чир (С. nasus), характеризуется существенным уменьшением хромосомного набора. По-видимому, дивергенция геномов у Coregonus произошла срав­нительно недавно. Сиги американского рода Prosopium измени­лись сильнее, дивергенция, возможно, была ускорена разнообра­зием мало заселенных рыбами экологических ниш в их ареале.

 

Таблица 1 – Число хромосом и хромосомных плеч у лососевых (без сигов)

Вид     2n     N. F.     Предполагаемое число хро­мосомных перестроек по от­ношению к гипотетическому предку (по: Викторовский, 1975).
центриче­ские слияния перицентрические инверсии всего
Oncorhynchus keta 100—102
О. tschawytscha 100—104
О. masu (-rodurus) 19—20 19—20
О. kisutch 104—106 22—23 22—23
О. nerka 57—58 102—104 23—24 23—24
О. gorbusha 52—54 100—104
Salmo trutta 78—82 98—100
S. ischchan 80—82 98—100
S. letnica
S. carpio
S. salar 54—60 72—74 22—24 37—39
S. (Parasalmo) gairdneri (-irideus) 58—65
S. (P.) mykiss 58—62 104—108
S. (P.) clarki clarki
S. (P.) clarki hen shavi
S. (P.) clarki levisi
S. (P.) aguabonita
S. (P.) apache 56(58)
S. (P.) gilae 105—106
Salmothymus obtusirostris
Salvelinus fontinalis
S. namaycush
S. leucomaenis 84—86 9—10 11 — 12
S. alpinus 80—84 96—100
S. (alpinus) cronocius 78—82 11 — 13 13—15
S. malma malma 76—78 13—14 17—18
S. m. krascheninnikovi 82—84 10—11 13—14
S. m. curilus 84—86 9—10 11 — 12
Hucho taimen
H. perryi
Brachymystax lenok 90(92) 100(116)
Stenodus leucichthys

 

Хариусы сохранили, по-видимому, в наибольшей степени свой «предковый» кариотип (по числу хромосом), но у них в ходе эволюции увеличилось число плеч. Наиболее вероятным механиз­мом этого увеличения являются перицентрические инверсии.

Близкие к лососям и сигам семейства того же отряда - корюшки (Osmeridae), аргентины (Argentinidae), глубоководные батилаговые (Bathylagidae) - очевидно, остались на исходном диплоидном уровне. Об этом говорят данные о числе хромосом и содержании ДНК. У некото­рых обитателей больших глубин из семейства батилагид коли­чество ДНК увеличено, повышено у них и число хромосом. Вероятнее всего это связано не с полиплоидией, а с тандемными дупликациями хромосомного материала и перестройками генома в результате транслокаций.

Трудно судить о причинах уменьшения числа хромосом в ходе вторичной диплоидизации геномов лососевых рыб. Возможны три объяснения.

1.Уменьшение диплоидных наборов происходило автомати­чески, в результате большей вероятности слияния хромосом (с последующей фиксацией таких перестроек), чем их разделения. Полиплоидия способствовала соединению родственных по проис­хождению хромосом.

2.Уменьшение числа хромосом связано со специализацией видов, в ходе которой образование комплексов сцепленных генов давало несомненное приспособительное преимущество.

3. Центрическое слияние родственных хромосом было выгодно, так как способствовало ускорению диплоидизации у полиплои­дов.

Вероятность чисто случайной фиксации хромосомных пере­строек без участия отбора очень мала, особенно если учесть редкость таких перестроек. Более вероятно, что при эволюционных преобразованиях сохранялись те перестройки, которые имели адаптивную ценность. Эти соображения заставляют считать селек­тивные объяснения более обоснованными.

Отметим еще, что следы не очень древней полиплоидизации лососевых проявляются у многих видов лососей в образовании в ходе мейоза кольцевых хромосом, квадривалентов и других отклоняющихся от нормы хромосомных фигур.

Большой интерес представляют эволюционные преобразования отряде карпообразных (Cypriniformes). Удивительно устойчивым по числу хромосом оказалось семейство карповых; если не считать немногих полиплоидов, число хромосом здесь варьирует незначительно, только специализированные горчаки (Rhodeinaе) характеризуются небольшим снижением хромосомных чисел, преобладают наборы с 50 хромосомами (рис. 1). Слабая вариация хромосомных наборов у карповых рыб, вероятнее всего, связана с их биологическими особенностями - высокой плодови­тостью, многообразием экологических ниш, приспособляемостью. Все это требует большой генетической изменчивости, свободной перекомбинации генов.

Похожие статьи:

poznayka.org

Определение пола у рыб | Cell Biology.ru

Определение пола.

У всех позвоночных животных пол индивидуума определяется генетически, то есть комбинацией половых хромосом, доставшихся от каждого из родителей при оплодотворении яйцеклетки. Но кроме генетических факторов, на определение пола у рыб могут влиять также температура и соленость воды, в которой развивается зародыш, соотношение периодов света и темноты. Определение пола под влиянием внешних условий называется фенотипическим, или модификационным.

Atlantic silversideAtlantic silverside

Так David O. Conover (David O. Conover, 1984) пишет, что большинство рождающихся ранней весной, при пониженных температурах, атерин (Atlantic silverside) становятся самками. А рыбы, развивающиеся позже при более высокой температуре, вырастают самцами. Это имеет огромное значение для выживаемости данного вида. Численность потомства напрямую зависит от плодовитости самок. Так как в данном случае самки растут дольше самцов, они имеют большой размер и соответственно могут дать много икры, поскольку размер их половых органов пропорционаленразмеру тела, чего не наблюдается у самцов.

Варианты генетической детерминации пола.

Самцы с одной Х-хромосомой или с двумя разными (XY) хромосомами имеют гетерогаметный пол, самки с ХХ-хромосомами — гомогаметный пол. У многих животных, наоборот, самки имеют гетерогаметный пол. Их половые хромосомы обозначают буквами Z и W или XY, а половые хромосомы гомогаметных самцов - ZZ или XX. У млекопитающих, нематод, моллюсков, иглокожих и у большинства членистоногих гетерогаметен мужской пол. У насекомых и рыб гетерогаметность наблюдается как у мужского, так и у женского пола. Гетерогаметность женского пола свойственна птицам, пресмыкающимся и некоторым земноводным. При определении пола у рыб оказалось, что гуппи, пецилия, сфенопс, медака и др. принадлежат к типу ХХ- XY (мужская гетерогаметность). A platyfish Xiphophorus maculatus имеют как мужскую (XY), так и женскую гетерогаметность (WY) и даже три типа половых хромосом (WY, WX, XX).Разные линии мозамбикских тиляпий имеют гетерогаметностьсамок и самцов. Скрещивание этих линий привело к образованию в потомстве одних самцов. У зеленых меченосцев (X. helleri) и черных макроподов (М. ореrcularis concolor) дифференцировка пола зависит от мужских и женских наследственных факторов, расположенных в аутосомах (половых хромосом нет).Механизм генетического контроля над развитием половых признаков может быть внутри- и межклеточным. Внутриклеточное определение пола не связано с образованием половых гормонов (напр., у насекомых), и действие генов, определяющих пол, ограничено клетками, в которых эти гены функционируют. При этом в одном организме могут нормально развиваться, не влияя друг на друга, участки тела с женскими и мужскими признаками. При межклеточном определении пола, характерном для млекопитающих и птиц, под контролем генов вырабатываются половые гормоны, которые, проникая во все клетки организма, обусловливают фенотипическое развитие признаков соответствующего пола. Различают прогамное, сингамное и эпигамное определение пола.Прогамное определение пола происходит до оплодотворения яйца, напр. дифференцировка яйцеклеток на быстро и медленно растущие. Первые становятся крупными, и из них после оплодотворения развиваются самки, вторые отличаются меньшими размерами и дают самцов, хотя оба вида яйцеклеток генетически одинаковы. Сингамное определение пола происходит во время оплодотворения, но на разных стадиях этого процесса. У некоторых видов с мужской гетерогамией и физиологической полиспермией (оплодотворение яйцеклетки несколькими сперматозоидами) пол определяется в момент кариогамии. Если с ядром яйцеклетки сливается мужское ядро с Y-хромосомой, разовьётся мужская особь, если с Х-хромосомой – женская. При женской гетерогамии пол потомства зависит от того, какая из половых хромосом попадает в ядро яйцеклетки во время мейоза. Если в ядре окажется Z-хромосома, разовьётся особь мужского пола, если W-хромосома – женского. Т.о, в данном случае пол зиготы устанавливается до кариогамии.Эпигамное определение пола наблюдается у разнополых видов с фенотипическим определением пола, когда направленность развития в сторону мужского или женского пола обусловливается влиянием внешних условий после оплодотворения.

Эндокринная регуляция дифференцировки пола у рыб.

В процессе дифференцировки пола у разнополых рыб центральная нервная система (ЦНС) участвует непродолжительное время (Baroiller, 1999). Вместе с тем, в течение этого времени в работе задействована гипоталамо-гипофизарная система посредством гонадотропир-релизинг фактора (ГРФ) и гонадотропиновых (ГТ) гормонов. При использовании специфических антител в гипофизе rainbow trout были найдены ГТ1 иммуночувствительные клетки на стадии, когда митоз эмбриональных клеток был впервые зарегистрирован в половых железах (Saga et al, 1993). Иммуноспецифичность к ГРФ наблюдалась только в течение половой дифференцировки, причем у обоих полов и в сходных отделах мозга, включая те, где обнаруживалсяГТ1. Чувствительность к гормону роста (ГР) в гипофизе обнаруживалась на более ранних стадиях чем к ГТ1. Было высказано предположение, что ГР может быть вовлечен в процесс дифференцировки пола, так как известно, что он участвует в регуляции синтеза стероидов в половых железах взрослых рыб. Иначе говоря, гонадотропин стимулирует продукцию стероидов, но уже после гистологической дифференцировки гонад. На более ранних стадиях была отмечена стимуляция продукции андростиндиона межпочкой. Не известно точно связана ли эта продукция стероидов с дифференцировкой гонад напрямую, но ясно, что участие межпочки в синтезе стероидов, которые в свою очередь влияют на дифференцировку гонад, помогает становлению пола у рыб. У гермофродитных видов рыб роль ЦНС имеет большое значение (Baroiller, 1999). Гонадотропины играют большую роль в инициации процесса инверсии пола. Это может быть связано с социальным контролем инверсии пола, который демонстрируется многими видами гермафродитов. Ключевым ферментом является ароматаза,которая превращает андрогены в эстрогены и тем самым способствует дифференцировке или инверсии пола. Также у рыб были найдены некоторые гены млекопитающих, которые имеют большое значение в процессе дифференцировки пола у последних (Hofsten and Olsson, 2005). Но у рыб их роль пока не изучена достаточно хорошо. К числу таких генов относятся: Sox9a and Sox9b, AMH, WT1, Drosophila fushi tarazu factor-1 (FTZ-F1).К примеру, у zebrafish не известны механизмы, контролирующие детерминацию и дифференцировку пола. Также не идентифицировано ни одного гена, связанного с полом и ни одной половой хромосомы. Тем не менее, некоторое число генов обнаруживает связь с процессом дифференцировки и детерминации пола. В центре всеобщего внимания сейчас находятся FTZ-F1 гены zebrafish, так как они вовлечены в развитие межпочки, а, следовательно, и в биосинтез стероидов, так как обнаруживают экспрессию, совпадающую с дифференцировкой и функционированием репродуктивной ткани (Hofsten and Olsson, 2005). Zebrafish может менятьпол при воздействии на нее эстрогенами, что наводит на мысль о решающей рола уровня эстрогенов в процессе дифференцировки пола. Продукт гена Cyp19 является ароматазой, обращающей тестостерон в 17-?-эстрадиол, и самцов (при большом их числе) в самок.

Соотношение полов.

При фенотипическом определении пола оно зависит от количества развивающихся организмов, которые попадают под влияние внешних факторов, детерминирующих тот или иной пол. При генетическом определении пола соотношение полов у большинства видов, как правило, очень близко к соотношению: 100 самок на 100 самцов. Однако и при таком определении пола есть отклонения. Так, у некоторых видов млекопитающих с мужской гетерогамией статистически достоверно рождается на 1 -2% больше потомков мужского пола. Изменение соотношения полов может быть почти у всех животных с генетическим определением пола результатом гибели половины зародышей гетерогаметного пола под действием сцепленных с полом леталей или рецессивных мутаций, несовместимых с жизнью.

Реверсия пола.

Существенный сдвиг соотношения организмов в сторону одного из полов имеет как теоретическое, так и практическое значение, т. к. один из полов обычно более продуктивен. Методы регуляции пола применяются в зависимости от типа определения пола и биологических и хозяйственных особенностей вида. При фенотипическом переопределении пола, если действие генов реализуется посредством гормонов, половые признаки изменяются при пересадке половых органов одного пола другому или при введении в организм гормонов противоположного пола, а также некоторых аминокислот. Степень фенотипических изменений пола зависит от особенностей вида и дозы введённого препарата. Однако лишь в редких случаях (у некоторых рыб и земноводных) особи с фенотипически переопределённым полом продуцируют гаметы, противоположные их генотипическому полу. В следующем поколении, если действие гормонов прекращается, снова вступает в силу генетический механизм определения пола.Уже давно было замечено, что самки рыб под воздействиемопределенных условий (среды, гормональных препаратов и т. п.) превращаются в самцов (гамбузиевые, меланохромисы и т. д.). Женский половой гормон (эстрол) и мужской (метилтестостерон) при добавлении в воду или корм переопределяют пол. Японский генетик Ямамото (Yamamoto, 1969) превратил самок золотых рыбок в самцов. При дальнейшем разведении все потомство оказалось женским. На сегодняшний день рыбоводы научились менять пол рыб, воздействуя небольшими дозами гормонов на икру.Также повреждение эндокринной системы самих рыб может стать причиной преимущественного рождения особей одного пола. Так Ларссон (Larsson at all, 2000) пишет, что вредные выбросы промышленных заводов вызывают нарушения в эндокринной системе рыб на ранних стадиях развития, что резко меняет соотношение полов в сторону преимущественного развития самцов.Но самое интересное – это социальные факторы изменения пола – то есть взрослые половозрелые рыбы меняют пол под влиянием «общественного мнения» так, чтобы оптимизировать соотношениеполов в популяции. Что же дает рыбе смена пола? Установлено, что количество и качество икры прямо зависит от размера самки. Для самцов такой зависимости нет. Поэтому стратегия, при которой рыбы сначала вступают в размножение как самцы, а став старше и крупнее, превращаются в самок, выглядит логичной. Так обстоит дело у дениса, у которого большая часть молодых рыб нерестится сначала как мелкие самцы, а через год уже как крупные самки. Превращение самцов в самок под влиянием социальных факторов хорошо изучено на примере рыбы-клоуна. Молодь клоуна оседает из планктона на риф под защиту актиний. Самая крупная рыба в группе становится самкой, вторая по величине – самцом. Остальные рыбы остаются неполовозрелыми. Но если самка погибает, то клоун-самец быстро превращается в самку, а следующая по величине рыба созревает как самец и занимает его место. Однако бывают ситуации, когда успех в размножении зависит от размеров самца. В случаях, когда самцу необходимо защищать гарем, нерестовую территорию илиохранять кладку икры, крупные самцы имеют преимущество перед мелкими. Поэтому у некоторых видов самки растут-растут и превращаются в самцов. Например, рыба шури (император) сначала нерестится как самка, а в следующий раз – как самец.Но есть на коралловых рифах рыбы, которым не нужно менять пол, поскольку они одновременно являются самцами и самками. У таких рыб-гермафродитов созревают и икра, и молоки. Если две такие особи встретятся и понравятся друг другу, то каждая из них принесет потомство. Если же достойного партнера не найдется, то можно прибегнуть и к самооплодотворению. Такая стратегия дает преимущество малочисленным глубоководным рыбам, которым трудно найти себе пару в океанских глубинах. Но до сих пор совершено непонятно, зачем это нужно коралловым рыбам. Коралловые рыбы-гермафродиты живут достаточно плотными популяциями, в которых выбор пары – не проблема. Более того, известны виды гермафродитов, которые образуют постоянные моногамные пары на всю жизнь.

Эволюция пола.

Раздельнополость (бисексуальность), свойственная уже многим одноклеточным (водоросли, простейшие), произошла от смешаннополости. Лишь в некоторых случаях (напр., при паразитизме) смешаннополость могла возникнуть вторично из раздельнополости. Так, у паразитических ракообразных наблюдаются все переходы от смешанно- к раздельнополости (напр., раздельнополые виды с хорошо развитыми самками и карликовыми самцами – явственный сдвиг в сторону гермафродитизма). Фенотипическое определение пола древнее генетического, т. к. на ранних стадиях эволюции ещё не существовало специального аппарата половых хромосом. Возникающие на определённых этапах эволюции специальные половые хромосомы (рыбы, земноводные) первоначально морфологически неотличимы от аутосом, и о наличии их можно судить только по признакам, сцепленным с полом. Вслед за морфологическими различиями между половыми хромосомами и аутосомами возникает дифференцировка между Х- и Y-хромосомой, что делает всё более редкой конъюгациюмежду ними и затрудняет обмен их участками при кроссинговере. Всё это способствует выполнению специфических функций половых хромосом – быть реализаторами женского или мужского пола. Полное исчезновение Y-хромосомы делает генетическое определение пола ещё более совершенным: пол определяется равновесием между числом аутосом и хромосом.Так Уолтер Трот и Хенз Уинкин (Traut and Winking, 2001) сообщили о результатах исследования мейотических хромосом и стадий эволюции половых хромосом на примере таких рыб как zebrafish, platyfish и guppy. После сравнительной геномной гибридизации митотических и мейотических хромосом этих трех видов было обнаружено, что они демонстрируют основные ступени дифференцировки половых хромосом. А именно: zebrafish имеет кориотип, состоящий из одних аутосом, platyfish – с генетически детерминированными половыми хромосомами, которые еще не подразделяются на X и Y-хромосомы, и, наконец, guppy с генетически и цитогенетически дифференцированными половыми хромосомами.Для zebrafish характерна половая дифференцировка в зависимости от условий окружающей среды. Для этого вида половые хромосомы не идентифицируются с помощью C-banding, хромомицина А3 или репликативного бэндинга. На стадии пахитены и диакинеза ни один из 25 бивалентов не демонстрирует морфологическую и молекулярную дифференцировку половых хромосом. Platyfish Xiphophorus maculatus имеют четко определенную систему половых хромосом, но с некоторыми вариациями между различными популяциями рыб. Так мексиканская популяция имеет XX/XY систему определения пола, в то время как некоторые другие популяции имеют W-хромосомы помимо X и Y. Хромосомы X и Y не имеют видимых отличий. Молекулярный маркер XIR, который был локализован на дистальном конце одной из акроцентрических хромосом, идентифицировал ее как Y-хромосому (Nanda et al. 2000). В том районе также находится пол-определяющий район (SDR – sex determining region). У guppy акроцентрическая Y-хромосома состоит изпроксимального сегмента, гомологичного району на X-хромосоме, с которым они спариваются на стадии ранней пахитены, и дистального сегмента, отличного от сегментов Х-хромосомы, который неспаривается с Х-хромосомой на стадии ранней пахитены, но образует синапсы позже. Он включает в себя уже известный пол-определяющий район и бросающийся в глаза вариабельный гетерохроматиновый район, чья структура зависит от индивидуальной линии Y-хромосомы. Также сравнительная геномная гибридизация показала большой блок преимущественно самец-специфичной повторенной ДНК (Nanda et al. 1990) и блок общей неспецифической ДНК. Так после гибридизации с олигонуклеотидной пробой (GACA)4 был обнаружен самец-специфичный локус повторов, который отличал Y-хромосому самцов с красным цветом тела.Болтенгаген A.A.

www.cellbiol.ru

Различие полов у рыб

По биологическому значению функция размножения у животных уступает только добыванию корма. Однако в период высокой половой активности половая доминанта подавляет и чувство голода. В водной среде процесс размножения отличается относительной простотой по технике исполнения. Чаще всего оплодотворение в воде носит вероятностный характер, а потому количество вариантов должно быть достаточно большим, чтобы сделать процесс оплодотворения результативным. Поэтому в целом для класса рыб характерна высокая плодовитость. Количество женских гамет за один период икрометания у представителей пелагических видов рыб достигает десятков и даже сотен миллионов, а количество сперматозоидов и того больше.

Среди животных с таким внутриклассовым морфофункциональным разнообразием, как рыбы, всегда есть исключения из общего правила. Это справедливо и по отношению к процессу размножения.

Существует ряд общих требований, без которых размножение невозможно. Во-первых, рыбы должны достичь возраста полового созревания. Правда, у рыб понятие "возраст полового созревания" достаточно расплывчато и не так привязано к календарному возрасту, как у высших позвоночных.

Межвидовые различия сроков полового созревания у рыб огромны: от 1 мес у гамбузии до 30 лет у некоторых видов осетровых рыб. У рыб сроки полового созревания помимо календарного возраста определяет ряд факторов внешней среды (температура воды, химический состав воды, интенсивность питания, плотность посадки в искусственные водоемы). Время полового созревания коррелирует с живой массой рыб.

Сроки полового созревания различаются у рыб разных популяций одного вида. Например, у леща половая зрелость наступает в популяции Ладожского озера в 8-9 лет, в популяции леща Средней Волги -в 6-7 лет, в Северном Каспии - в 4-6 лет. Азово-черноморская популяция леща начинает нереститься уже в 3 года. То же можно сказать и о других видах рыб. Например, у волжского и азовского осетров половая зрелость наступает в 9-10 лет. У куринского осетра половая зрелость самок наступает лишь в 30 летнем возрасте.

Половая дифференциация у рыб - явление уникальное. Рыбы обладают очень пластичной системой репродукции, которая позволила им занять практически все существующие на Земле водоемы. В соответствии с биологической необходимостью рыбы могут изменять половую принадлежность отдельных особей. У рыб нет единообразной хромосомной системы полового детерминизма, как, например, у человека (XX-, XY-хромосомы. т. е. системы половых гетерохромосом). Точнее, как вариант она встречается в классе рыб, например у рыбца. Самки рыбца в диплоидном наборе имеют две одинаковые половые хромосомы (XX), самцы рыбца имеют две разные половые хромосомы (XY).

У других видов, например японского угря, картина прямо противоположная: у самца имеется пара одинаковых половых хромосом (ZZ), а у самки -две разные половые хромосомы (WZ). Кроме того, есть виды, у которых у одного из полов половая хромосома непарная. Так, например, самка фундулюса имеет парные половые хромосомы (XX), а самец - непарную половую хромосому (ХО).

У лабиринтовой рыбы коллизии только самец несет половую хромосому, да и ту непарную.

У основных объектов рыборазведения - карповых, лососевых, представителей осетровых рыб -половых хромосом нет. У этих рыб половой детерминизм имеет полихромосомную основу, т. е. гены, кодирующие первичные и вторичные половые признаки, рассредоточены по другим соматическим хромосомам. Такие резкие различия полового генно-хромосомного детерминизма у рыб едва ли связаны с филогенезом, так как они встречаются в пределах одного семейства и даже в пределах одного вида (последнее характерно для разных популяций угрей и пециллий).

Неопределенность с половой принадлежностью остается и в онтогенезе. Чаще всего у молоди нет половых различий до момента полового созревания. При этом даже гистологические исследования гонад не проясняют ситуации с полом. У рыб первичные половые клетки способны развиваться как по Женскому, так и по мужскому пути. Многим видам рыб свойствен ювенальный гермафродитизм, т. е. параллельное развитие и мужских, и женских гонад и соответственно половых клеток, одни из которых впоследствии отмирают.

У рыб известно явление проандрии и прототинии, когда на раннем этапе онтогенеза рыбы развиваются мужские гонады, а на Последующем - женские. Как нормальное физиологическое явление у рыб встречается несколько типов функционального гермафродитизма. Особенно много примеров этого явления у окуневых рыб. Есть виды окуней, которые первую половину репродуктивного периода являются самками, а вторую- самцами. При этом рыбы имеют и первичные, и вторичные половые признаки с нормальным оно- или сперматогенезом и соответствующим полу нерестовым поведением.

И уж совсем необычно выглядит истинный суточный транссексуализм у морских окуней. В течение суток одна и та же особь многократно меняет свою половую принадлежность, выметывает или икру, или молоки. Самооплодотворение здесь маловероятно, но возможно.

Вторичные половые признаки рыб, которые особенно ярко проявляются в период нереста, имеют важное практическое значение в рыбоводстве при сортировке рыб по половому признаку.

Например, у лососей признаком самцов являются более яркая окраска и изменения опорно-двигательного аппарата - искривление челюстей, появление горба. У самца колюшки перед нерестом брюшко окрашивается в алый цвет. Самцы многих морских бычков перед нерестом становятся абсолютно черными. У карповых (вобла, язь) на голове и теле самцов в преднерестовый период появляется "жемчужная сыпь" - роговые образования белесого цвета. Появление брачного наряда у рыб определяется гормональными перестройками в этот период жизни. Значение его специалисты трактуют по-разному. Брачная окраска в нерестовый период может выполнять защитную роль. У лососевых брачный наряд маскирует рыб, делает их менее заметными на галечном грунте в прозрачной воде. В других случаях нерестовая окраска имеет сигнальное значение (горбуша, кета).

Пол одних рыб можно определить по форме анального отверстия, других - по форме плавников (рис. 11.1).

Вторичные половые признаки рыб

Рис. 11.1. Вторичные половые признаки рыб:

а-спинные плавники Lafaeo dero; б-грудные плавники тибетского гольца; в - брюшные плавники линя

Например, у живородящих пициллид половой диморфизм довольно рано проявляется в особом строении анального плавника самцов, выполняющего роль совокупительного органа. У акул такую же роль выполняет придаток брюшного плавника.

Важным половым признаком может служить половое поведение рыб перед нерестом. Это может быть преследование самцом самки (карп, щука и др.) или более сложное поведение - устройство гнезда (лабиринтовые), охрана территории. После нереста у многих видов рыб наблюдаются элементы родительского поведения: вентиляция икры, инкубация икры в ротовой полости, охрана молоди (тиляпия). Конечно, какими бы сложными формами поведения рыбы не обладали в период размножения, все они являются результатом врожденных стереотипических поведенческих актов. Половое поведение проявляется при изменении гормонального статуса рыб в ответ на действие внешней среды. Половая доминанта формируется под влиянием усиления функции гипоталамо-гипофизарно-гонадо-адреналовой системы.

Управление половым детерминизмом при искусственном разведении рыб имеет большое практическое значение. Особенно полезным этот прием может быть при разведении ценных рыб - осетровых, лососевых. Здесь желательно иметь большое поголовье самок и ограниченное количество самцов, однако половые признаки у этих видов проявляются довольно поздно, когда уже затрачено много средств и времени.

Регулировать пол в искусственных условиях выращивания удается при помощи стероидных гормонов. Андрогены и эстрогены не разрушаются в желудочно-кишечном тракте. Поэтому они добавляются в корма. Включения метилтестостерона в рацион личинок тиляпии в количестве 30-50 мг/кг приводит к тому, что в стаде половозрелых рыб самцы составляют 95-100 %. При добавлении в рацион форели этого же гормона (3 мг/кг) все особи превращались в самцов. При добавлении в рацион гормона эстрадиола (20 мг/кг корма) у лососей формировалось полностью (на 100 %) женское гомосексуальное стадо. Такой же "феминистический" эффект получали у тиляпии при помощи этинилэстрадиола в количестве 50 мг/кг корма.

Таким образом, гормональная регуляция пола у рыб при помощи синтетических или природных стероидов может претендовать на самостоятельный технологический прием в рыбоводстве.



biofile.ru

Какие хромосомы определяют пол потомства у людей и животных?

Хромосомы — длинные сегменты генов, которые содержат наследственную информацию. Они состоят из ДНК и белков, расположенных в ядре наших клеток. Хромосомы определяют все, от цвета волос и цвета глаз до пола. Являетесь ли вы мужчиной или женщиной, зависит от наличия или отсутствия определенных хромосом. Человеческие клетки содержат 23 пары или в общей сложности 46 хромосом.

Есть 22 пары аутосом (неполовые хромосомы) и одна пара гоносом (половых хромосом). Половыми хромосомами являются Х и Y хромосомы.

Половые клетки

При половом размножении человека сливаются два отдельных гамета и образовывается зигота. Гаметы — это половые клетки, продуцируемые типом клеточного деления, называемого мейозом. Они содержат только один набор хромосом и называются гаплоидами.

Мужская гамета, называемая сперматозоидом, относительно подвижна и обычно имеет жгутик. Женская гамета, называемая яйцеклеткой, является неподвижной и относительно большая в сравнении с мужской гаметой. Когда гаплоидные мужские и женские гаметы объединяются в процессе, называемом оплодотворением, они развиваются в зиготу. Зигота диплоидная, а это означает, что она содержит два набора хромосом.

Половые хромосомы XY

Мужские гаметы или сперматозоиды у людей и других млекопитающих являются гетерогаметическими и содержат один из двух типов половых хромосом.

Клетки спермы переносят хромосомы X или Y. Однако женские гаметы или яйцеклетки содержат только Х-хромосому и являются гомогаметическими. В этом случае клетка спермы определяет пол индивидуума. Если сперматозоидная клетка, содержащая Х-хромосому, оплодотворяет яйцеклетку, результирующая зигота будет XX — женский пол. Если клетка спермы содержит Y-хромосому, тогда результирующая зигота будет XY — мужской пол.

Y-хромосомы несут необходимые гены для развития мужских гонад или яичек. Особи, у которых отсутствует Y-хромосома (XO или XX), развивают женские гонады или яичники. Для развития полностью функционирующих яичников необходимы две Х-хромосомы.

Гены, расположенные на Х-хромосоме, называются Х-сцепленные генами, и они определяют Х-сцепленное рецессивное наследование. Мутация, происходящая в одном из этих генов, может привести к развитию измененных черт. Поскольку самцы имеют только одну Х-хромосому, измененная черта всегда будет выражаться у самцов. У самок признак будет выражен не всегда, так как у них есть две Х-хромосомы. Измененная черта может быть замаскирована, если только одна Х-хромосома имеет мутацию, и черта является рецессивной.

Половые хромосомы XX

Кузнечики, тараканы и другие насекомые имеют сходную с человеком систему определения пола. Взрослым самцам не хватает Y-половой хромосомы и имеют только Х-хромосому. Они производят клетки спермы, которые содержат хромосому Х или хромосому без пола, которая обозначается как О. Самки имеют XX и производят яйцеклетки, содержащие Х-хромосому.

Если клетка спермы X оплодотворяет яйцеклетку, результирующая зигота будет XX — женский пол. Если клетка спермы, не содержащая половой хромосомы, оплодотворяет яйцеклетку, результирующая зигота будет XO — мужской пол.

Половые хромосомы ZW

Птицы, насекомые, такие как бабочки, лягушки, змеи и некоторые виды рыб, имеют разную систему определения пола. У этих животных именно женская гамета определяет пол. Женские гаметы могут содержать либо хромосому Z, либо хромосому W. Мужские гаметы содержат только Z-хромосому. У этих видов сочетание хромосом ZW означает женский пол, а  ZZ — мужской пол.

Партеногенез

Как насчет таких животных, как большинство видов ос, пчел и муравьев, у которых нет половых хромосом? Как определяется пол? У этих видов пол определяет оплодотворение. Если яйцо будет оплодотворено, то из него появится самка. Из неоплодотворенного яйца может появится самец. Самка диплоидна и содержит два набора хромосом, а гаплоидный самец содержит лишь один набор хромосом. Такое развитие самца из неоплодотворенного яйца и самки из оплодотворенного яйца является типом партеногенеза, известного как арренотокный партеногенез.

Экологическое определение пола

У черепах и крокодилов пол определяется температурой окружающей среды в определенный период развития оплодотворенного яйца. Яйца, которые инкубируются выше определенной температуры, развиваются в один пол, а яйца, инкубированные ниже определенной температуры, развиваются в другой пол.

← Подписывайтесь на наши аккаунты в соц.сетях, чтобы не пропустить самую интересную информацию!

natworld.info

Число хромосом у разных видов

Вид 2n
Человек (Homo sapiens) 46
Горилла 48
Макака (Macaca mulatta) 42
домашние животные  
Кошка (Felis domesticus) 38
Собака (Canis familiaris) 78
Кролик 44
Лошадь 64
Корова (Bovis domesticus) 120
Курица (Gallus domesticus) 78
Утка 80
Свинья 40
Овца 54
лабораторные животные  
Плодовая мушка (D.melanogaster) 8
Морской еж (Strongylocentrotus purpuratus) 42
Шпорцевая лягушка (Xenopus laevis) 36
Мышь (Mus musculus) 40
Дрожжи (S.cerevisiae) 32
Нематода 22/24
Крыса 42
Морская свинка 16
позвоночные  
Еж 96
Лиса 34
Голубь 16
Карп 104
Минога 174
Лягушка (Rana pipiens) 26
Cазан 104
растения  
Клевер 14
Тополь 38
Кукуруза (Zea mays) 20
Горох 14
Береза 84
Ель 24
Лук (Allium cepa) 16
Арабидопсис (Arabidopsis thaliana) 10
Картошка (S.tuberosum) 48
Ужовник 48
лилия 24
Хвощ 216
Томат 24
Крыжовник 16
Вишня 32
Рожь 14
Пшеница 42
Папоротник ~1200
беспозвоночные  
Миксомицеты 14
Трипаносома ?
Бабочка 380
Шелкопряд 56
Протей (Necturus maculosis) 38
Рак (Cambarus clarkii) 200
Гидра 30
Аскарида 2
Пчела 16
Муравей (Myrmecia pilosula) 2
Виноградная улитка 24
Земляной червь 36
Речной рак 116
Малярийный плазмодий 2
Радиолярия 1600

Наименьшее число хромосом: самки подвида муровьев Myrmecia pilosula имеют пару хромосом на клетку. Самцы имеют только 1 хрососому в каждой клетке.Наибольшее число: вид папоротников Ophioglossum reticulatum имеет около 630 пар хромосом, или 1260 хромосом на клеткуВерхний предел числа х-м не зависит от количества ДНК которое в них входит: у американской амфибии Amphiuma ДНК в ~30 раз больше, чем у человека, которая помещается в 14 хромосомах. Самая маленькая хромосома амфибии больше самых крупных хромосом человека --> большое количество ДНК может не влиять на увеличение числа хромосом.

Нет верхнего предела ограничивающего количество хромосом: бабочка Lysandra nivescens n=140-141 хромосома.Существует минимальная масса хромосомы необходимая для расхождения хромосом в митозе - критическая масса. Наличие такой массы может частично объяснить избыточность ДНК.

www.cellbiol.ru

Мужские хромосомы. Y-хромосома на что оказывает влияние и за что отвечает?

Предмет генетических исследований - явления наследственности и изменчивости. Американский ученый Т-Х. Морган создал хромосомную теорию наследственности, доказывающую, что каждый биологический вид можно характеризировать определенным кариотипом, который содержит такие виды хромосом, как соматические и половые. Последние представлены отдельной парой, различающейся по мужской и женской особи. В данной статье мы изучим, какое строение имеют женские и мужские хромосомы и чем они отличаются между собой.

Что такое кариотип?

Каждая клетка, содержащая ядро, характеризуется определенным количеством хромосом. Оно получило название кариотипа. У различных биологических видов наличие структурных единиц наследственности строго специфично, например, кариотип человека составляет 46 хромосом, у шимпанзе - 48, речного рака - 112. Их строение, величина, форма отличаются у особей, относящихся к различным систематическим таксонам.мужские хромосомы Число хромосом в клетке тела называется диплоидным набором. Он характерен для соматических органов и тканей. Если в результате мутаций кариотип изменяется (например, у больных синдромом Клайнфельтера количество хромосом 47, 48), то такие особи имеют сниженную фертильность и в большинстве случаев бесплодны. Другое наследственное заболевание, связанное с половыми хромосомами, – синдром Тернера-Шерешевского. Он встречается у женщин, имеющих в кариотипе не 46, а 45 хромосом. Это значит, что в половой паре присутствуют не две х-хромосомы, а только одна. Фенотипически это проявляется в недоразвитии половых желез, слабо выраженных вторичных половых признаках и бесплодии.

Соматические и половые хромосомы

Они отличаются как формой, так и набором генов, входящих в их состав. Мужские хромосомы человека и млекопитающих входят в гетерогаметную половую пару ХУ, обеспечивающую развитие как первичных, так и вторичных мужских половых признаков.виды хромосом У самцов птиц половая пара содержит две одинаковые ZZ мужские хромосомы и называется гомогаметной. В отличие от хромосом, детерминирующих пол организма, в кариотипе находятся наследственные структуры, идентичные как у мужского, так и у женского пола. Они носят название аутосом. В кариотипе человека их 22 пары. Половые мужские и женские хромосомы образуют 23 пару, поэтому кариотип мужчины можно представить в виде общей формулы: 22 пары аутосом + ХУ, а женщины – 22 пары аутосом + ХХ.

Мейоз

Образование половых клеток – гамет, при слиянии которых формируется зигота, происходит в половых железах: семенниках и яичниках. В их тканях осуществляется мейоз – процесс деления клеток, приводящий к образованию гамет, содержащих гаплоидный набор хромосом.гаплоидный набор хромосом Овогенез в яичниках приводит к созреванию яйцеклеток только одного вида: 22 аутосомы + Х, а сперматогенез обеспечивает созревание гомет двух видов: 22 аутосомы + Х или 22 аутосомы + У. У человека же пол будущего ребенка определяется в момент слияния ядер яйцеклетки и сперматозоида и зависит от кариотипа сперматозоида.

Хромосомный механизм и определение пола

Мы уже рассмотрели, в какой момент происходит определение пола у человека - в момент оплодотворения, и оно зависит от хромосомного набора сперматозоида. У других животных представители разного пола отличаются количеством хромосом. Например, у морских червей, насекомых, кузнечиков в диплоидном наборе самцов присутствует лишь одна хромосома из половой пары, а у самок – обе. Так, гаплоидный набор хромосом самца морского червя ацирокантуса можно выразить формулами: 5 хромосом + 0 или 5 хромосом + х, а самки имеют в яйцеклетках только один набор 5 хромосом + х.

Что влияет на половой диморфизм?

Кроме хромосомного есть еще и другие способы определения пола. У некоторых беспозвоночных – коловраток, многощетинковых червей - пол определяется еще до момента слияния гамет – оплодотворения, в результате которого мужские и женские хромосомы образуют гомологичные пары. Самки морской полихеты – динофилюса в процессе овогенеза образуют яйцеклетки двух видов. Первые – мелкие, обедненные желтком, – из них развиваются самцы. Другие – крупные, с огромным запасом питательных веществ - служат для развития самок. У медоносных пчел – насекомых ряда Перепончатокрылых - самки продуцируют два вида яйцеклеток: диплоидные и гаплоидные. Из неоплодотворенных яиц развиваются самцы – трутни, а из оплодотворенных – самки, являющиеся рабочими пчелами.мужские и женские хромосомы

Гормоны и их воздействие на формирование пола

У человека мужские железы – семенники - продуцируют половые гормоны ряда тестостерона. Они влияют как на развитие первичных половых признаков (анатомическое строение наружных и внутренних половых органов), так и на особенности физиологии. Под воздействием тестостерона формируются вторичные половые признаки – строение скелета, особенности фигуры, оволосение тела, тембр голоса, строение гортани. В организме женщины яичники вырабатывают не только половые клетки, но и гормоны, являясь железами смешанной секреции. Половые гормоны, такие как эстрадиол, прогестерон, эстроген, способствуют развитию наружных и внутренних половых органов, оволосению тела по женскому типу, регулируют менструальный цикл и протекание беременности.  число хромосом в клеткеУ некоторых позвоночных животных, рыб, кольчатых червей и земноводных биологически активные вещества, продуцируемые гонадами, сильно влияют на развитие первичных и вторичных половых признаков, а виды хромосом при этом не оказывают настолько большого воздействия на формирование пола. Например, личинки морских полихет – бонеллии - под влиянием женских половых гормонов прекращают свой рост (размеры 1-3 мм) и становятся карликовыми самцами. Они обитают в половых путях самок, которые имеют длину тела до 1 метра. У рыб-чистильщиков самцы содержат гаремы из нескольких самок. Женские особи, кроме яичников, имеют зачатки семенников. Как только самец гибнет, одна из гаремных самок берет на себя его функцию (в её теле начинают активно развиваться мужские гонады, вырабатывающие половые гормоны).

Регуляция пола

В генетике человека она осуществляется двумя правилами: первое определяет зависимость развития зачаточных половых желез от секреции тестостерона и гормона MIS. Второе правило указывает на исключительную роль, которую играет У-хромосома. Мужской пол и все соответствующие ему анатомические и физиологические признаки развиваются под воздействием генов, находящихся в У-хромосоме. Взаимосвязь и зависимость обоих правил в генетике человека называется принципом роста: у эмбриона, являющегося бисексуальным (то есть имеющим зачатки женских желез – мюллерова протока и мужских гонад – вольфова канала) дифференцировка эмбриональной половой железы зависит от наличия или отсутствия в кариотипе У-хромосомы.

Генетическая информация в У-хромосоме

Исследованиями ученых-генетиков, в частности Т-Х. Моргана, было установлено, что у человека и млекопитающих генный состав Х- и У-хромосом неодинаков. Мужские хромосомы у человека не имеют некоторых аллелей, присутствующих в Х-хромосоме. Однако в их генофонде представлен ген SRY, контролирующий сперматогенез, приводящий к формированию мужского пола. Наследственные нарушения этого гена в эмбрионе приводит к развитию генетического заболевания – синдрома Суайра. В результате женская особь, развивающаяся из такого эмбриона, содержит в кариотипе ХУ половую пару или только участок У-хромосомы, содержащий генный локус. Он активизирует развитие гонад. У больных женщин не дифференцируются вторичные половые признаки, и они бесплодны.хромосома мужской пол

У-хромосома и наследственные заболевания

Как отмечалось ранее, мужская хромосома отличается от Х-хромосомы как размерами (она меньше), так и формой (имеет вид крючка). Также для нее специфичен и набор генов. Так, мутация одного из генов У-хромосомы фенотипически проявляется появлением пучка жестких волос на мочке уха. Этот признак характерен только для мужчин. Известно такое наследственное заболевание, вызванное хромосомной мутацией, как синдром Клайнфельтера. Больной мужчина имеет в кариотипе лишние женские или мужские хромосомы: ХХУ или ХХУУ. мужские хромосомы у человекаОсновными диагностическими признаками является патологический рост молочных желез, остеопороз, бесплодие. Заболевание достаточно распространено: на каждых 500 новорожденных мальчиков приходится 1 больной.

Подводя итог, отметим, что у человека, как и у других млекопитающих, пол будущего организма определяется в момент оплодотворения, вследствие определенной комбинации в зиготе половых Х- и У-хромосом.

fb.ru

Число хромосом у разных видов

Вид 2n
Человек (Homo sapiens) 46
Горилла 48
Макака (Macaca mulatta) 42
домашние животные  
Кошка (Felis domesticus) 38
Собака (Canis familiaris) 78
Кролик 44
Лошадь 64
Корова (Bovis domesticus) 120
Курица (Gallus domesticus) 78
Утка 80
Свинья 40
Овца 54
лабораторные животные  
Плодовая мушка (D.melanogaster) 8
Морской еж (Strongylocentrotus purpuratus) 42
Шпорцевая лягушка (Xenopus laevis) 36
Мышь (Mus musculus) 40
Дрожжи (S.cerevisiae) 32
Нематода 22/24
Крыса 42
Морская свинка 16
позвоночные  
Еж 96
Лиса 34
Голубь 16
Карп 104
Минога 174
Лягушка (Rana pipiens) 26
Cазан 104
растения  
Клевер 14
Тополь 38
Кукуруза (Zea mays) 20
Горох 14
Береза 84
Ель 24
Лук (Allium cepa) 16
Арабидопсис (Arabidopsis thaliana) 10
Картошка (S.tuberosum) 48
Ужовник 48
лилия 24
Хвощ 216
Томат 24
Крыжовник 16
Вишня 32
Рожь 14
Пшеница 42
Папоротник ~1200
беспозвоночные  
Миксомицеты 14
Трипаносома ?
Бабочка 380
Шелкопряд 56
Протей (Necturus maculosis) 38
Рак (Cambarus clarkii) 200
Гидра 30
Аскарида 2
Пчела 16
Муравей (Myrmecia pilosula) 2
Виноградная улитка 24
Земляной червь 36
Речной рак 116
Малярийный плазмодий 2
Радиолярия 1600

Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..